Calculus ================================== - `《高等数学》同济版 全程教学视频(宋浩老师) `_ 一元复合函数的求导法则 -------------------------- 定理 1 ``````````````` 如果函数 :math:`u=g(x)` 在点 :math:`x` 可导,而函数 :math:`y=f(u)` 在对应点 :math:`u=g(x)` 可导,那么复合函数 :math:`y=f(g(x))` 在点 :math:`x` 可导,且有 .. math:: \frac{\mathrm{d} y}{\mathrm{d} x}={f}'(u) \cdot {g}'(x) \quad or \quad \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} y}{\mathrm{d} u}\cdot \frac{\mathrm{d} u}{\mathrm{d} x} 严格来说函数 :math:`y=f(u)` 实际上只是 :math:`u` 的函数,并不是 :math:`x` 的函数。 而 :math:`h(x)=(f\circ g)(x)` 才是 :math:`x` 的函数。这种记号上的随意会在复杂问题上造成困扰。 .. math:: \begin{align} \cfrac{h(x+\triangle x)-h(x)}{\triangle x } &=\cfrac{f(g(x+\triangle x))-f(g(x))}{\triangle x }\\ &=\cfrac{[f(g(x+\triangle x))-f(g(x))]}{[g(x+\triangle x)-g(x)]}\cfrac{[g(x+\triangle x)-g(x)]}{\triangle x } \end{align} .. math:: \begin{align} \lim_{\triangle x \to 0}\cfrac{h(x+\triangle x)-h(x)}{\triangle x } &=\lim_{\triangle x \to 0}\cfrac{f(g(x+\triangle x))-f(g(x))}{\triangle x }\\ &=\lim_{\triangle x \to 0}\cfrac{[f(g(x+\triangle x))-f(g(x))]}{[g(x+\triangle x)-g(x)]}\cfrac{[g(x+\triangle x)-g(x)]}{\triangle x }\\ &=\frac{\mathrm{d} f(u)}{\mathrm{d} u} \Bigg|_{u=g(x)} \cdot \frac{\mathrm{d} g(x)}{\mathrm{d} x} \Bigg|_{x=x} \end{align} 也就是说,如果把函数 :math:`y` 定义成 :math:`y=f(u)` ,那么复合函数就不要记作 :math:`y` ,这有歧义。这里不妨记作 :math:`h` , 一般来说,:math:`h` 和 :math:`f` 的表达式显然不是一回事,这是两个不同的函数。 一般有: .. math:: \begin{align} y_{0}=f(u_{0})= f(u(x_{0} ))= f(u(x ))\Bigg|_{x=x_{0}} \end{align} 举个例子: .. math:: \begin{align} y(u)=f(u)=2u\\ u(x)=g(x)=sin(x)\\ h(x)=f(g(x))=(f \circ g)(x)=2sin(x) \end{align} 显然,这里的函数 :math:`y` 和 函数 :math:`h` 不是一回事。 我们可以将变量换为任何记号,比如 :math:`y(u)=f(u)=2u` 或者 :math:`y(t)=f(t)=2t` 或者 :math:`y(x)=f(x)=2x` 对于函数 :math:`h` 有 :math:`h(x)=2sin(x)` ,如果此时也记做 :math:`y(x)=2sin(x)` 则会造成歧义。 .. math:: \begin{align} y(u)=f(u)=2u\\ u(x)=g(x)=sin(x)\\ \hat{y}(x)=h(x)=f(g(x))=(f \circ g)(x)=2sin(x) \end{align} 这里的函数 :math:`y` 和 函数 :math:`\hat{y}` 应该加以区分。 .. math:: y(sin(x))=f(sin(x))=\hat{y}(x)=2sin(x) 从这个角度来说,定理更合理的表述应该是: 如果函数 :math:`u=g(x)` 在点 :math:`x` 可导,而函数 :math:`y=f(u)` 在对应点 :math:`u=g(x)` 可导,那么复合函数 :math:`\hat{y}=f(g(x))` 在点 :math:`x` 可导,且有 .. math:: \frac{\mathrm{d} \hat{y}(x)}{\mathrm{d} x}={f}'(u) \cdot {g}'(x) \quad or \quad \frac{\mathrm{d} \hat{y}(x)}{\mathrm{d} x}=\frac{\mathrm{d} y(u)}{\mathrm{d} u}\cdot \frac{\mathrm{d} u(x)}{\mathrm{d} x} 多元复合函数的求导法则 -------------------------- 定理 1 ``````````````` 如果函数 :math:`u=\phi(t)` 及 :math:`v=\psi(t)` 都在点 :math:`t` 可导,函数 :math:`z=f(u,v)` 在对应点 :math:`(u,v)` 具有连续偏导数,那么复合函数 :math:`z=f(\phi(t),\psi(t))` 在点 :math:`t` 可导,且有 .. math:: \frac{\mathrm{d} z}{\mathrm{d} t}=\frac{\partial z}{\partial u} \frac{\mathrm{d} u}{\mathrm{d} t}+ \frac{\partial z}{\partial v} \frac{\mathrm{d} v}{\mathrm{d} t} 更准确的叙述: 如果函数 :math:`u=\phi(t)` 及 :math:`v=\psi(t)` 都在点 :math:`t` 可导,函数 :math:`z(u,v)=f(u,v)` 在对应点 :math:`(u,v)` 具有连续偏导数,那么复合函数 :math:`\hat{z}(t)=f(\phi(t),\psi(t))` 在点 :math:`t` 可导,且有 .. math:: \frac{\mathrm{d} \hat{z}(t)}{\mathrm{d} t}=\frac{\partial z(u,v)}{\partial u} \frac{\mathrm{d} u(t)}{\mathrm{d} t}+ \frac{\partial z(u,v)}{\partial v} \frac{\mathrm{d} v(t)}{\mathrm{d} t} 即: .. math:: \frac{\mathrm{d} \hat{z}(t)}{\mathrm{d} t}=\frac{\partial z(u,v)}{\partial u} \frac{\mathrm{d} u(t)}{\mathrm{d} t}+ \frac{\partial z(u,v)}{\partial v} \frac{\mathrm{d} v(t)}{\mathrm{d} t} 定理 2 ``````````````` 如果函数 :math:`u=\phi(x,y)` 及 :math:`v=\psi(x,y)` 都在点 :math:`(x,y)` 具有对 :math:`x` 及对 :math:`y` 的偏导数,函数 :math:`z=f(u,v)` 在对应点 :math:`(u,v)` 具有连续偏导数,那么复合函数 :math:`z=f(\phi(x,y),\psi(x,y))` 在点 :math:`(x,y)` 的两个偏导数都存在,且有 .. math:: \begin{align} \frac{\partial z}{\partial x} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x}+ \frac{\partial z}{\partial v} \frac{\partial v}{\partial x}\\ \frac{\partial z}{\partial y} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y}+ \frac{\partial z}{\partial v} \frac{\partial v}{\partial y}\\ \end{align} 类似的,设 :math:`u=\phi(x,y)` 、:math:`v=\psi(x,y)` 及 :math:`w=\omega(x,y)` 都在点 :math:`(x,y)` 具有对 :math:`x` 及对 :math:`y` 的偏导数,函数 :math:`z=f(u,v,w)` 在对应点 :math:`(u,v,w)` 具有连续偏导数,那么复合函数 .. math:: z=f(\phi(x,y),\psi(x,y),\omega(x,y)) 在点 :math:`(x,y)` 的两个偏导数都存在,且有 .. math:: \begin{align} \frac{\partial z}{\partial x} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x}+ \frac{\partial z}{\partial v} \frac{\partial v}{\partial x}+ \frac{\partial z}{\partial w} \frac{\partial w}{\partial x}\\ \frac{\partial z}{\partial y} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y}+ \frac{\partial z}{\partial v} \frac{\partial v}{\partial y}+ \frac{\partial z}{\partial w} \frac{\partial w}{\partial y} \end{align} 更准确的叙述: 如果函数 :math:`u=\phi(x,y)` 及 :math:`v=\psi(x,y)` 都在点 :math:`(x,y)` 具有对 :math:`x` 及对 :math:`y` 的偏导数,函数 :math:`z(u,v)=f(u,v)` 在对应点 :math:`(u,v)` 具有连续偏导数,那么复合函数 :math:`\hat{z}(x,y)=f(\phi(x,y),\psi(x,y))` 在点 :math:`(x,y)` 的两个偏导数都存在,且有 .. math:: \begin{align} \frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial z(u,v)}{\partial u} \frac{\partial u(x,y)}{\partial x}+ \frac{\partial z(u,v)}{\partial v} \frac{\partial v(x,y)}{\partial x}\\ \frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial z(u,v)}{\partial u} \frac{\partial u(x,y)}{\partial y}+ \frac{\partial z(u,v)}{\partial v} \frac{\partial v(x,y)}{\partial y}\\ \end{align} 类似的,设 :math:`u=\phi(x,y)` 、:math:`v=\psi(x,y)` 及 :math:`w=\omega(x,y)` 都在点 :math:`(x,y)` 具有对 :math:`x` 及对 :math:`y` 的偏导数,函数 :math:`z(u,v,w)=f(u,v,w)` 在对应点 :math:`(u,v,w)` 具有连续偏导数,那么复合函数 .. math:: \hat{z}(x,y)=f(\phi(x,y),\psi(x,y),\omega(x,y)) 在点 :math:`(x,y)` 的两个偏导数都存在,且有 .. math:: \begin{align} \frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial x}+ \frac{\partial z(u,v,w)}{\partial v} \frac{\partial v(x,y)}{\partial x}+ \frac{\partial z(u,v,w)}{\partial w} \frac{\partial w(x,y)}{\partial x}\\ \frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial y}+ \frac{\partial z(u,v,w)}{\partial v} \frac{\partial v(x,y)}{\partial y}+ \frac{\partial z(u,v,w)}{\partial w} \frac{\partial w(x,y)}{\partial y} \end{align} 定理 3 ``````````````` 如果函数 :math:`u=\phi(x,y)` 在点 :math:`(x,y)` 具有对 :math:`x` 及对 :math:`y`的偏导数,函数 :math:`v=\psi(y)` 在点 :math:`y` 可导,函数 :math:`z=f(u,v)` 在对应点 :math:`(u,v)` 具有连续偏导数,那么复合函数 :math:`z=f(\phi(x,y),\psi(y))` 在点 :math:`(x,y)` 的两个偏导数都存在,且有 .. math:: \begin{align} \frac{\partial z}{\partial x} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x}\\ \frac{\partial z}{\partial y} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y}+ \frac{\partial z}{\partial v} \frac{\mathrm{d} v}{\mathrm{d} y}\\ \end{align} 如果复合函数的某些中间变量本身又是复合函数的自变量 设 :math:`u=\phi(x,y)` 、:math:`v=x` 及 :math:`w=y` 都在点 :math:`(x,y)` 具有对 :math:`x` 及对 :math:`y` 的偏导数,函数 :math:`z=f(u,v,w)` 即 :math:`z=f(u,x,y)` 在对应点 :math:`(u,v,w)` 具有连续偏导数,那么复合函数 .. math:: z=f(\phi(x,y),x,y) 有 .. math:: \begin{align} \frac{\partial v}{\partial x}&=1, \quad \frac{\partial v}{\partial y}=0\\ \frac{\partial w}{\partial x}&=0, \quad \frac{\partial w}{\partial y}=1 \end{align} 继续,有 .. math:: \begin{align} \frac{\partial z}{\partial x} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x}+ \frac{\partial z}{\partial v} \cdot 1+ \frac{\partial z}{\partial w} \cdot 0\\ \frac{\partial z}{\partial y} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y}+ \frac{\partial z}{\partial v} \cdot 0+ \frac{\partial z}{\partial w} \cdot 1 \end{align} 继续,有 .. math:: \begin{align} \frac{\partial z}{\partial x} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x}+ \frac{\partial z}{\partial v}\\ \frac{\partial z}{\partial y} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y}+ \frac{\partial z}{\partial w} \end{align} 更准确的叙述: 如果函数 :math:`u=\phi(x,y)` 在点 :math:`(x,y)` 具有对 :math:`x` 及对 :math:`y` 的偏导数,函数 :math:`v=\psi(y)` 在点 :math:`y` 可导,函数 :math:`z(u,v)=f(u,v)` 在对应点 :math:`(u,v)` 具有连续偏导数,那么复合函数 :math:`\hat{z}(x,y)=f(\phi(x,y),\psi(y))=\hat{f}(x,y)` 在点 :math:`(x,y)` 的两个偏导数都存在,且有 .. math:: \begin{align} \frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial z(u,v)}{\partial u} \frac{\partial u(x,y)}{\partial x}+ \frac{\partial z(u,v)}{\partial v} \cancelto{0}{\frac{\partial v(x,y)}{\partial x}}\\ \frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial z(u,v)}{\partial u} \frac{\partial u(x,y)}{\partial y}+ \frac{\partial z(u,v)}{\partial v} \cancelto{\frac{\mathrm{d} v(y)}{\mathrm{d} y}}{\frac{\partial v(x,y)}{\partial y}} \end{align} .. math:: \begin{align} \frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial z(u,v)}{\partial u} \frac{\partial u(x,y)}{\partial x}\\ \frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial z(u,v)}{\partial u} \frac{\partial u(x,y)}{\partial y}+ \frac{\partial z(u,v)}{\partial v} {\frac{\mathrm{d} v(y)}{\mathrm{d} y}} \end{align} 如果复合函数的某些中间变量本身又是复合函数的自变量 设 :math:`u=\phi(x,y)` 、:math:`v=x` 及 :math:`w=y` 都在点 :math:`(x,y)` 具有对 :math:`x` 及对 :math:`y` 的偏导数,函数 :math:`z(u,v,w)=f(u,v,w)` 即 :math:`z=f(u,x,y)` 在对应点 :math:`(u,v,w)` 具有连续偏导数,那么复合函数 .. math:: \hat{z}(x,y)=f(\phi(x,y),x,y)=\hat{f}(x,y) 有: .. math:: \begin{align} \frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial x}+ \frac{\partial z(u,v,w)}{\partial v} \frac{\partial v(x,y)}{\partial x}+ \frac{\partial z(u,v,w)}{\partial w} \frac{\partial w(x,y)}{\partial x}\\ \frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial y}+ \frac{\partial z(u,v,w)}{\partial v} \frac{\partial v(x,y)}{\partial y}+ \frac{\partial z(u,v,w)}{\partial w} \frac{\partial w(x,y)}{\partial y} \end{align} 继续,有: .. math:: \begin{align} \frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial x}+ \frac{\partial z(u,v,w)}{\partial v} \cancelto{1}{\frac{\partial v(x,y)}{\partial x}}+ \frac{\partial z(u,v,w)}{\partial w} \cancelto{0}{\frac{\partial w(x,y)}{\partial x}}\\ \frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial y}+ \frac{\partial z(u,v,w)}{\partial v} \cancelto{0}{\frac{\partial v(x,y)}{\partial y}}+ \frac{\partial z(u,v,w)}{\partial w} \cancelto{1}{\frac{\partial w(x,y)}{\partial y}} \end{align} 即: .. math:: \begin{align} \frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial x}+ \frac{\partial z(u,v,w)}{\partial v}\\ \frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial y}+ \frac{\partial z(u,v,w)}{\partial w} \end{align} 即: .. math:: \begin{align} \frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial x}+ \frac{\partial z(u,v,w)}{\partial x}\\ \frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial y}+ \frac{\partial z(u,v,w)}{\partial y} \end{align} 也可以写成: .. math:: \begin{align} \frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial f(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial x}+ \frac{\partial f(u,v,w)}{\partial x}\\ \frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial f(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial y}+ \frac{\partial f(u,v,w)}{\partial y} \end{align} 继续,也可以写成: .. math:: \begin{align} \frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial f(u,x,y)}{\partial u} \frac{\partial u(x,y)}{\partial x}+ \frac{\partial f(u,x,y)}{\partial x}\\ \frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial f(u,x,y)}{\partial u} \frac{\partial u(x,y)}{\partial y}+ \frac{\partial f(u,x,y)}{\partial y} \end{align} 需要注意的是,虽然数值上有: .. math:: \begin{align} \hat{z}(x,y)&= \hat{f}(x,y)=z(u(x,y),x,y)=f(u(x,y),x,y)\\ \end{align} 但是,函数形式上 .. math:: \begin{align} \hat{z}&\ne z\\ \hat{f}&\ne f\\ \hat{z}&\equiv \hat{f}\\ {z}&\equiv {f}\\ \end{align}