Leibniz integral ================================== Integration by substitution -------------------------------------- .. math:: \int_{a}^{b} f(x)dx=\int_{\alpha }^{\beta } f(\varphi(t)){\varphi}' (t)dt Leibniz integral rule -------------------------------------- #. `Leibniz integral rule `_ #. `How to take the derivative of the integral? `_ General form: differentiation under the integral sign .. math:: \int_{a(x)}^{b(x)} f\left ( x,t \right ) dt Theorem — Let f(x,t) be a function such that both :math:`f\left ( x,t \right )` are continuous it t and x in some region of the xt-plane, including :math:`a(x)\le t\le b(x),x_{0} \le x\le x_{1}`. Also suppose that the functions :math:`a(x)` and functions :math:`b(x)` are both continuous and both have continuous derivatives for :math:`x_{0} \le x\le x_{1}`.Then for :math:`x_{0} \le x\le x_{1}`, .. math:: {\displaystyle {\frac {d}{dx}}\left(\int _{a(x)}^{b(x)}f(x,t)\,dt\right)=f{\big (}x,b(x){\big )}\cdot {\frac {d}{dx}}b(x)-f{\big (}x,a(x){\big )}\cdot {\frac {d}{dx}}a(x)+\int _{a(x)}^{b(x)}{\frac {\partial }{\partial x}}f(x,t)\,dt.} The right hand side may also be written using Lagrange's notation as: .. math:: {\textstyle f(x,b(x))\,b^{\prime }(x)-f(x,a(x))\,a^{\prime }(x)+\displaystyle \int _{a(x)}^{b(x)}f_{x}(x,t)\,dt.} another form .. math:: \Phi(x)=\int_{\alpha(x) }^{\beta(x)} f(x, y) dy .. math:: \Phi(t)=\int_{\alpha(t) }^{\beta(t)} f(t, x) dx .. math:: \Phi(t)=\int_{\alpha(t) }^{\beta(t)} F(x, t) dx .. math:: \begin{align} \frac{\mathrm{d} \Phi(t)}{\mathrm{d} t}&=\frac{\Phi(t+\Delta t)-\Phi(t)}{\Delta t}\\ &=\int_{\alpha(t) }^{\beta(t)}\frac{ F(x, t+\Delta t)-F(x, t)}{\Delta t} dx\\ &+\frac{1}{\Delta t}\int_{\beta(t) }^{\beta(t+\Delta t)}{ F(x, t+\Delta t)} dx \\ &-\frac{1}{\Delta t}\int_{\alpha(t) }^{\alpha(t+\Delta t)}{ F(x, t+\Delta t)} dx \end{align} .. math:: \begin{align} \frac{\mathrm{d} \Phi(t)}{\mathrm{d} t}&=\frac{\mathrm{d} }{\mathrm{d} t}\int_{\alpha(t) }^{\beta(t)}F(x, t) dx\\\\ &=\int_{\alpha(t) }^{\beta(t)}\frac{\partial F(x, t)}{\partial t} dx +[ F(\beta(t), t)\dot{\beta}(t) - F(\alpha(t), t)\dot{\alpha}(t) ]\\ \end{align} This can also be written as .. math:: \cfrac{\mathrm{d}}{\mathrm{d}t}{\int_{g(t)}^{h(t)}F(x,t)\mathrm{d}x }={\int_{g(t)}^{h(t)}\frac{\partial F(x,t)}{\partial t}\mathrm{d}x }+\left \{ F[h(t),t]\dot{h}(t)-F[g(t),t]\dot{g}(t) \right \} One proof runs as follows, modulo precisely stated hypotheses and some analytic details. Set .. math:: \Phi(u, v, t)=\int_{u}^{v} F(x, t) d x :math:`u = g(t)`, and :math:`v = h(t)`. By the chain rule .. math:: \frac{d}{d t} \Phi[g(t), h(t), t]=\left(\frac{\partial \Phi}{\partial u} \dot{g}+\frac{\partial \Phi}{\partial v} h\right)+\frac{\partial \Phi}{\partial t} The first two terms are bracketed because they measure all changes due to variation of the interval of integration [g(t), h(t)], and they are evaluated by applying the Fundamental Theorem to :math:`\Phi(u, v, t)=\int_{u}^{v} F(x, t) d x`. The third term measures change due to variation of the integrand. If enough smoothness is assumed to justify interchange of the integration and differentiation operators, then .. math:: \frac{\partial \Phi}{\partial t}=\frac{\partial}{\partial t} \int_{u}^{v} F(x, t) d x=\int_{u}^{v} \frac{\partial F(x, t)}{\partial t} d x . Another proof .. math:: \begin{aligned} \phi_{t}(u) & =x(u, t), \\ \phi_{t}:[a, b] & \rightarrow\left[\phi_{t}(a), \phi_{t}(b)\right]=[g(t), h(t)]=C_{t} . \end{aligned} By the formula for change of variable in a simple integral .. math:: \int_{g(t)}^{h(t)} F(x) d x=\int_{\phi_{t}(a)}^{\phi_{t}(b)} F(x) d x=\int_{a}^{b} F[x(u, t)] \frac{\partial x}{\partial u} d u . This transition is excellent, because it has changed the integral over a moving domain to one over a fixed domain. We pay for this fixed domain with a time-varying integrand. No matter, we like it; we thrive on differentiation under the integral sign: .. math:: \begin{aligned} \frac{\mathrm{d} }{\mathrm{d} t} \int_{g(t)}^{h(t)} F(x) d x &=\frac{\mathrm{d} }{\mathrm{d} t} \int_{a}^{b} F[x(u, t)] \frac{\partial x(u, t)}{\partial u} d u \\ &=\int_{a}^{b}\frac{\partial}{\partial t}\left \{ F[x(u, t)] \frac{\partial x(u, t)}{\partial u}\right \}d u \\ &=\int_{a}^{b}\left \{\frac{\partial F[x(u, t)]}{\partial x}\frac{\partial x(u, t)}{\partial t} \frac{\partial x(u, t)}{\partial u}+F[x(u, t)]\frac{\partial x^{2} (u, t)}{\partial u\partial t}\right \}d u \\ \end{aligned} The fixed domain has done its job, and we return to the moving domain. The instantaneous velocity is :math:`v = v(u, t) = \partial x(u, t)/ {\partial t}`, which we also consider as a function of :math:`x` and :math:`t` via the transformation :math:`(u, t) \leftrightarrow (x, t)`. When :math:`t` is fixed, .. math:: \begin{aligned} \frac{\partial x^{2} (u, t)}{\partial u\partial t}&=\frac{\partial v(u, t)}{\partial u}\\ &=\cfrac{\cfrac{\partial v(u, t)}{\partial u}}{\cfrac{\partial x(u, t)}{\partial u}} {\frac{\partial x(u, t)}{\partial u}} \\ &={\cfrac{\partial v(u, t)}{\partial x(u, t)}}{\cfrac{\partial x(u, t)}{\partial u}} \end{aligned} hence .. math:: \begin{aligned} &\int_{a}^{b}\left \{\frac{\partial F[x(u, t)]}{\partial x}\frac{\partial x(u, t)}{\partial t} \frac{\partial x(u, t)}{\partial u}+F[x(u, t)]\frac{\partial x^{2} (u, t)}{\partial u\partial t}\right \}d u \\ =&\int_{a}^{b}\left \{\frac{\partial F[x(u, t)]}{\partial x}\frac{\partial x(u, t)}{\partial t} \frac{\partial x(u, t)}{\partial u}+F[x(u, t)]{\cfrac{\partial v(u, t)}{\partial x(u, t)}}{\cfrac{\partial x(u, t)}{\partial u}}\right \}d u \\ =&\int_{a}^{b}\left \{\frac{\partial F[x(u, t)]}{\partial x}\frac{\partial x(u, t)}{\partial t} +F[x(u, t)]{\cfrac{\partial v(u, t)}{\partial x(u, t)}}\right \}{\cfrac{\partial x(u, t)}{\partial u}}d u \\ =&\int_{\phi_{t}(a)}^{\phi_{t}(b)}\left \{\frac{\partial F[x(u, t)]}{\partial x}\frac{\partial x(u, t)}{\partial t} +F[x(u, t)]{\cfrac{\partial v(u, t)}{\partial x(u, t)}}\right \}d x \\ \end{aligned} that is .. math:: \begin{aligned} &\int_{\phi_{t}(a)}^{\phi_{t}(b)}\left \{\frac{\partial F[x(u, t)]}{\partial x}\frac{\partial x(u, t)}{\partial t} +F[x(u, t)]{\cfrac{\partial v(u, t)}{\partial x(u, t)}}\right \}d x \\ =&\int_{\phi_{t}(a)}^{\phi_{t}(b)}\frac{\partial }{\partial x} [F[x(u, t)]v(u, t)]d x \\ =&\int_{g(t)}^{h(t)}\frac{\partial }{\partial x} [F[x(u, t)]v(u, t)]d x \end{aligned} Two-dimensional, time-dependent case We are also given a function :math:`F(x, y, t)`. The problem is to find .. math:: \frac{\mathrm{d} }{\mathrm{d} t}\iint_{D(t)}^{} F(x,y,t)dxdy Certainly our first move should be separation of boundary variation from integrand variation. This is easy enough by the chain rule device in the first section and results in .. math:: \begin{aligned} &\frac{\mathrm{d} }{\mathrm{d} t}\iint_{D(t)}^{} F(x,y,t)dxdy{\Bigg|}_{t=t_{0} }\\ =&\frac{\mathrm{d} }{\mathrm{d} t}\iint_{D(t)}^{} F(x,y,t_{0})dxdy{\Bigg|}_{t=t_{0} }+ \iint_{D(t_{0})}^{} \frac{\partial F(x,y,t)}{\partial t}{\Bigg|}_{t=t_{0} }dxdy \end{aligned} This is routine. The essence of the problem is to find .. math:: \frac{\mathrm{d} }{\mathrm{d} t}\iint_{D(t)}^{} F(x,y)dxdy Let :math:`\mathbf{v}=\mathbf{v}(x, y, t)` denote the velocity vector at a boundary point :math:`(x, y)` of :math:`Dt` and let :math:`n` denote the outward unit normal. In the difference .. math:: \iint_{D(t+\Delta t )}^{} F(x,y)dxdy-\iint_{D(t)}^{} F(x,y)dxdy everything in the overlap of :math:`D(t)` and :math:`D(t+\Delta t)` cancels; only the thin boundary strip makes a contribution. From the detail, this contribution is .. math:: F(x,y)(\mathbf{v}\Delta t)\cdot(\mathbf{n}ds) up to higher order differentials, where :math:`ds` is the element of arc length. Hence .. math:: \begin{aligned} &\lim_{\Delta t \to 0} \cfrac{1}{\Delta t}\left \{ \iint_{D(t+\Delta t )}^{} F(x,y)dxdy-\iint_{D(t)}^{} F(x,y)dxdy\right \}\\ =&\lim_{\Delta t \to 0}\cfrac{1}{\Delta t}\int_{\partial D(t)}^{} F(x,y)(\mathbf{v}\Delta t)\cdot(\mathbf{n}ds) \end{aligned} .. math:: \cfrac{\mathrm{d} }{\mathrm{d} t}\iint_{D(t)}^{} F(x,y)dxdy = \int_{\partial D(t)}^{} F(x,y){\mathbf{v}}\cdot{\mathbf{n}}ds where :math:`\partial` a denotes boundary. Before taking limits, we compute :math:`{\mathbf{v}}\cdot{\mathbf{n}}ds`. We rotate the unit tangent :math:`(dy/ds,-dx/ds)` backwards through a right angle to obtain :math:`\mathbf{n}=(dy/ds,-dx/ds)`, hence .. math:: \mathbf{n}=(dy/ds,-dx/ds)=(u,v)\cdot(dy,-dx)=udy-vdx Therefore .. math:: \begin{aligned} \cfrac{\mathrm{d} }{\mathrm{d} t}\iint_{D(t)}^{} F(x,y)dxdy =& \int_{\partial D(t)}^{} F(x,y){\mathbf{v}}\cdot{\mathbf{n}}ds \\ =&\int_{\partial D(t)}^{} F(x,y)(u,v)\cdot(dy,-dx) \\ =&\int_{\partial D(t)}^{} F(x,y)(udy-vdx)\\ =&\int_{\partial D(t)}^{} (-F(x,y)vdx+F(x,y)udy) \end{aligned} We can transform the boundary integral into an integral over D, by Green's Theorem. .. math:: \begin{aligned} P(x,y)&\equiv -F(x,y)v(x,y)\\ Q(x,y)&\equiv F(x,y)u(x,y) \end{aligned} .. math:: \begin{aligned} (\cfrac{\partial Q(x,y)}{\partial x}-\cfrac{\partial P(x,y)}{\partial y})= &(\cfrac{\partial [F(x,y)u(x,y)]}{\partial x}-\cfrac{\partial [-F(x,y)v(x,y)]}{\partial y})\\ =&(\cfrac{\partial [F(x,y)u(x,y)]}{\partial x}+\cfrac{\partial [F(x,y)v(x,y)]}{\partial y})\\ =&(\cfrac{\partial [F(x,y)u(x,y)]}{\partial x}+\cfrac{\partial [F(x,y)v(x,y)]}{\partial y})\\ \end{aligned} .. math:: \begin{aligned} \cfrac{\partial [F(x,y)u(x,y)]}{\partial x}-\cfrac{\partial [-F(x,y)v(x,y)]}{\partial y}=&\\ \cfrac{\partial [F(x,y)u(x,y)]}{\partial x}+\cfrac{\partial [F(x,y)v(x,y)]}{\partial y}=\mathrm{div} \left \{ F(x,y)\mathbf{v(x,y)} \right \} \\ \cfrac{\partial (F u)}{\partial x}+\cfrac{\partial (F v)}{\partial y}=\mathrm{div} ( F\mathbf{v} ) \end{aligned} .. math:: \cfrac{\partial (F u)}{\partial x}+\cfrac{\partial (F v)}{\partial y}=\mathrm{div} ( F\mathbf{v} )= \nabla \cdot( F\mathbf{v} ) Here .. math:: \begin{aligned} \mathrm{div} ( F\mathbf{v} )\equiv\nabla \cdot( F\mathbf{v} )=&\cfrac{\partial (F u)}{\partial x}+\cfrac{\partial (F v)}{\partial y}\\ =&F \nabla \cdot \mathbf{v}+\mathbf{v} \cdot \nabla F \\ =&\nabla F \cdot \mathbf{v} + F \nabla \cdot \mathbf{v} \end{aligned} .. math:: \nabla \cdot(\phi \mathbf{v})=\phi \nabla \cdot \mathbf{v}+\mathbf{v} \cdot \nabla \phi .. math:: \nabla \cdot(F \mathbf{v})=F \nabla \cdot \mathbf{v}+\mathbf{v} \cdot \nabla F .. math:: \begin{aligned} &\frac{\mathrm{d} }{\mathrm{d} t}\iint_{D(t)}^{} F(x,y,t)dxdy\\ \end{aligned} .. math:: \begin{aligned} \frac{\mathrm{d} }{\mathrm{d} t}\iint_{D(t)}^{} F(x,y,t)dxdy =\int_{\partial D(t)}^{} F(x,y){\mathbf{v}}\cdot{\mathbf{n}}ds+ \iint_{D(t)}^{} \frac{\partial F(x,y,t)}{\partial t}dxdy \end{aligned} .. math:: \begin{aligned} \frac{\mathrm{d} }{\mathrm{d} t}\iint_{D(t)}^{} F(x,y,t)dxdy =&\iint_{D(t)}^{} \nabla \cdot(F \mathbf{v})dxdy+ \iint_{D(t)}^{} \frac{\partial F(x,y,t)}{\partial t}dxdy\\ =&\iint_{D(t)}^{} \left \{\nabla \cdot(F \mathbf{v})+\cfrac{\partial F(x,y,t)}{\partial t}\right \}dxdy \end{aligned} A space formula. .. math:: \begin{aligned} \frac{d}{d t} \iiint_{D_{t}} F(\mathbf{x}, t) d x d y d z & =\iint_{\partial D_{t}} F \mathbf{v} \cdot \mathbf{n} dS+\iiint_{D_{t}} \frac{\partial F}{\partial t} d x d y d z \\ \end{aligned} .. math:: \begin{aligned} \frac{d}{d t} \iiint_{D_{t}} F(\mathbf{x}, t) d x d y d z & =\iint_{\partial D_{t}} F \mathbf{v} \cdot d\mathbf{S} +\iiint_{D_{t}} \frac{\partial F}{\partial t} d x d y d z \\ \end{aligned} .. math:: \begin{aligned} \frac{d}{d t} \iiint_{D_{t}} F(\mathbf{x}, t) d x d y d z & = \iiint_{D_{t}}\left[\operatorname{div}(F \mathbf{v})+\frac{\partial F}{\partial t}\right] d x d y d z\\ &=\iiint_{D_{t}}\left[\nabla \cdot(F \mathbf{v})+\frac{\partial F}{\partial t}\right] d x d y d z\\ \end{aligned} Green's theorem -------------------------------------- #. `Green's theorem `_ Let C be a positively oriented, piecewise smooth, simple closed curve in a plane, and let D be the region bounded by C. If L and M are functions of (x, y) defined on an open region containing D and have continuous partial derivatives there, then .. math:: \oint_{C}^{} (Ldx+Mdy)=\iint_{D}^{} (\cfrac{\partial M}{\partial x}-\cfrac{\partial L}{\partial y})dxdy where the path of integration along C is anticlockwise. This formula can also be written as .. math:: \oint_{C}^{} (P(x,y)dx+Q(x,y)dy)=\iint_{D}^{} (\cfrac{\partial Q}{\partial x}-\cfrac{\partial P}{\partial y})dxdy\\ A Leibniz integral rule for a two dimensional surface moving in three dimensional space is[3][4] .. math:: {\displaystyle {\frac {d}{dt}}\iint _{\Sigma (t)}\mathbf {F} (\mathbf {r} ,t)\cdot d\mathbf {A} =\iint _{\Sigma (t)}\left(\mathbf {F} _{t}(\mathbf {r} ,t)+\left[\nabla \cdot \mathbf {F} (\mathbf {r} ,t)\right]\mathbf {v} \right)\cdot d\mathbf {A} -\oint _{\partial \Sigma (t)}\left[\mathbf {v} \times \mathbf {F} (\mathbf {r} ,t)\right]\cdot d\mathbf {s} ,}