Substitution ================================== Substitution for Integrals --------------------------------------------------------------------------- - `Substitution for Definite Integrals `_ - `Substitution for Definite Integrals-math.libretexts.org `_ - `Lesson Explainer: Integration by Substitution: Definite Integrals `_ - `Substitution Rule for Indefinite Integrals `_ Substitution Rule for Indefinite Integrals --------------------------------------------------------------------------- If :math:`u=g(x)` is a differential function whose range is an interval :math:`I`, and :math:`f` is continuous on :math:`I`, then .. math:: \int f(g(x))\cdot {g}'(x)dx = \int f(u)du Proof By the Chain Rule, :math:`F(g(x))` is an antiderivative of :math:`f(g(x))\cdot {g}'(x)` whenever :math:`F` is an antiderivative of :math:`f`, beacuse .. math:: \begin{align} \cfrac{d}{dx}F(g(x)) & = {F}'(g(x))\cdot {g}'(x)\\ & = f(g(x)){g}'(x) \end{align} If we make the substitution :math:`u=g(x)`, then .. math:: \begin{align} \int f(g(x))\cdot {g}'(x)dx &= \int \cfrac{d}{dx}F(g(x))dx\\ &=F(g(x))+C\\ &=F(u)+C\\ &=\int {F}'(u)du\\ &=\int f(u)du\\ \end{align} Substitution In Definite Integrals --------------------------------------------------------------------------- If :math:`{g}'` is continuous on the interval :math:`[a,b]` and :math:`f` is continuous on the range of :math:`g(x)=u`, then .. math:: \int_{a}^{b}f(g(x))\cdot {g}'(x)dx=\int_{g(a)}^{g(b)}f(u)du\\ Proof Let :math:`F` denote any antiderivative of :math:`f`. Then, .. math:: \begin{aligned} \int_{a}^{b} f(g(x)) \cdot g^{\prime}(x) d x & =F(g(x))\Bigg ]_{x=a}^{x=b} \\ & =F(g(b))-F(g(a)) \\ & =F(u)\Bigg]_{u=g(a)}^{u=g(b)} \\ & =\int_{g(a)}^{g(b)} f(u) d u . \end{aligned} Substitution Rule for Indefinite Integrals( version 2) --------------------------------------------------------- For convenience, swap :math:`x` and :math:`u` If :math:`x=g(u)` is a differential function whose range is an interval :math:`I`, and :math:`f` is continuous on :math:`I`, then .. math:: \int f(x)dx = \int f(g(u))\cdot {g}'(u)du Proof By the Chain Rule, :math:`F(g(u))` is an antiderivative of :math:`f(g(u))\cdot {g}'(u)` whenever :math:`F` is an antiderivative of :math:`f`, beacuse .. math:: \begin{align} \cfrac{d}{du}F(g(u)) & = {F}'(g(u))\cdot {g}'(u)\\ & = f(g(u)){g}'(u) \end{align} If we make the substitution :math:`x=g(u)`, then .. math:: \begin{align} \int f(g(u))\cdot {g}'(u)du &= \int \cfrac{d}{du}F(g(u))du\\ &=F(g(u))+C\\ &=F(x)+C\\ &=\int {F}'(x)dx\\ &=\int f(x)dx\\ \end{align} Substitution In Definite Integrals( version 2) --------------------------------------------------------------------------- If :math:`{g}'` is continuous on the interval :math:`[a,b]` and :math:`f` is continuous on the range of :math:`g(u)=x`, then .. math:: \int_{g(a)}^{g(b)}f(x)dx=\int_{a}^{b}f(g(u))\cdot {g}'(u)du Proof Let :math:`F` denote any antiderivative of :math:`f`. Then, .. math:: \begin{aligned} \int_{a}^{b} f(g(x)) \cdot g^{\prime}(x) d x & =F(g(x))\Bigg ]_{x=a}^{x=b} \\ & =F(g(b))-F(g(a)) \\ & =F(u)\Bigg]_{u=g(a)}^{u=g(b)} \\ & =\int_{g(a)}^{g(b)} f(u) d u . \end{aligned} Some Example -------------------- .. math:: \int_{g(a)}^{g(b)}f(x)dx=\int_{a}^{b}f(g(u)){g}'(u) du - .. math:: x=g(u)\\ - .. math:: \left\{\begin{matrix} u=a,& x=g(a)\\ u=b,& x=g(b)\\ \end{matrix}\right. - .. math:: \int_{g(a)}^{g(b)}f(x)dx=\int_{a}^{b}f(g(u))J(u) du\\ - .. math:: J(u)=\text{det}\begin{bmatrix} \cfrac{\partial x}{\partial u} \end{bmatrix}=\text{det}\begin{bmatrix} \cfrac{\partial g}{\partial u} \end{bmatrix}=\text{det}\begin{bmatrix} \cfrac{\text{d} g}{\text{d} u} \end{bmatrix}=\text{det}\begin{bmatrix} {g}'(u) \end{bmatrix}={g}'(u)\\ Example 1: .. math:: x=g(u,t)=(1-u)t+\frac{1}{2}ut^2+u \\ .. math:: \left\{\begin{matrix} u=0,t=1,& x=g(u,t)=g(0,1)=1\\ u=1,t=1,& x=g(u,t)=g(1,1)=\frac{1}{2}+1\\ \end{matrix}\right. Let .. math:: f(x,t)\equiv 1 then there is .. math:: \int_{g(a,t)}^{g(b,t)}f(x,t)dx=\int_{1}^{1+\frac{1}{2} }1dx=\frac{1}{2} - .. math:: \cfrac{\partial g(u,t)}{\partial u}=\cfrac{\partial [(1-u)t+\frac{1}{2}ut^2+u]}{\partial u}=-t+\frac{1}{2}t^2+1 - .. math:: \cfrac{\partial g(u,t)}{\partial u}\Bigg|_{t=1}=\cfrac{\partial [(1-u)t+\frac{1}{2}ut^2+u]}{\partial u}\Bigg|_{t=1}=(-t+\frac{1}{2}t^2+1)\Bigg|_{t=1}=\frac{1}{2} - .. math:: \int_{g(a,t)}^{g(b,t)}f(x,t)dx=\int_{a(t)}^{b(t)}f(g(u,t),t)\cfrac{\partial g(u,t)}{\partial u} du\\ - .. math:: \int_{a(t)}^{b(t)}f(g(u,t),t)\cfrac{\partial g(u,t)}{\partial u} du=\int_{0}^{1}1\times\frac{1}{2} du=\frac{1}{2} Let .. math:: f(x,t)\equiv x then there is .. math:: \int_{g(a,t)}^{g(b,t)}f(x,t)dx=\int_{1}^{1+\frac{1}{2} }xdx=\frac{1}{2}x^2\Bigg|_{1}^{1+\frac{1}{2}} =\frac{1}{2}((\frac{3}{2})^2-1^{2})=\frac{5}{8} - .. math:: \cfrac{\partial g(u,t)}{\partial u}\Bigg|_{t=1}=\cfrac{\partial [(1-u)t+\frac{1}{2}ut^2+u]}{\partial u}\Bigg|_{t=1}=(-t+\frac{1}{2}t^2+1)\Bigg|_{t=1}=\frac{1}{2} - .. math:: \int_{g(a,t)}^{g(b,t)}f(x,t)dx=\int_{a(t)}^{b(t)}f(g(u,t),t)\cfrac{\partial g(u,t)}{\partial u} du - .. math:: x=g(u,t)=(1-u)t+\frac{1}{2}ut^2+u \\ - .. math:: \begin{align} \displaystyle \int_{a(t)}^{b(t)}f(g(u,t),t)\cfrac{\partial g(u,t)}{\partial u} du & = \int_{0}^{1}((1-u)1+\frac{1}{2}u1^2+u)\times\frac{1}{2} du\\ \displaystyle & = \int_{0}^{1}(1+\frac{1}{2}u)\times\frac{1}{2} du\\ \displaystyle& = \frac{1}{2}(u+\frac{1}{4}u^2)\Bigg|_{0}^{1}\\ \displaystyle& = \frac{1}{2}(1+\frac{1}{4})\\ & = \frac{5}{8} \end{align} Example 2: .. math:: \begin{array}{l} x=g(u,t)\\ f(x,t)=f(g(u,t),t)=\hat{f}(u,t)\\ \cfrac{\text{d}\hat{f}(u,t)}{\text{d}t}\equiv \cfrac{\partial \hat{f}(u,t)}{\partial t} =\cfrac{\partial {f}(x,t)}{\partial t}+\cfrac{\partial {f}(x,t)}{\partial x}\cfrac{\partial {g}(u,t)}{\partial t}\\ \cfrac{\text{d}\hat{f}}{\text{d}t}\equiv \cfrac{\partial \hat{f}}{\partial t} =\cfrac{\partial {f}}{\partial t}+\cfrac{\partial {f}}{\partial x}\cfrac{\partial {g}}{\partial t} \end{array} - .. math:: x=g(u,t)=(1-u)t+\frac{1}{2}ut^2+u \\ - .. math:: \begin{array}{l} f(x,t)= xt \\ f(x,t)= xt=((1-u)t+\frac{1}{2}ut^2+u)t=\hat{f}(u,t) \\ \hat{f}(u,t)=((1-u)t+\frac{1}{2}ut^2+u)t=((1-u)t^2+\frac{1}{2}ut^3+ut) \end{array} - .. math:: \cfrac{\text{d}\hat{f}(u,t)}{\partial t}\equiv\cfrac{\partial \hat{f}(u,t)}{\partial t} =\cfrac{\partial ((1-u)t^2+\cfrac{1}{2}ut^3+ut)}{\partial t} =(2(1-u)t+3\cfrac{1}{2}ut^2+u) - .. math:: \cfrac{\partial f(x,t)}{\partial t}=x,\quad\cfrac{\partial f(x,t)}{\partial x}=t\\ - .. math:: \begin{align} \cfrac{\partial x}{\partial t} & = \cfrac{\partial g(u,t)}{\partial t}\\ & = \cfrac{\partial ((1-u)t+\frac{1}{2}ut^2+u)}{\partial t}\\ & = (1-u)+ut \end{align} - .. math:: \begin{align} \cfrac{\text{d}f(x,t)}{\text{d} t} & = \cfrac{\partial {f}(x,t)}{\partial t}+\cfrac{\partial {f}(x,t)}{\partial x}\cfrac{\partial {g}(u,t)}{\partial t}\\ & = x+t((1-u)+ut)\\ & = x+((1-u)t+ut^2)\\ & = ((1-u)t+\frac{1}{2}ut^2+u)+((1-u)t+ut^2)\\ & = (2(1-u)t+\frac{3}{2}ut^2+u)\\ \end{align} A better understanding of this formula ------------------------------------------------ .. math:: \begin{array}{c} x=g(u,t)=(1-u)t+\cfrac{1}{2}ut^2+u\\ {g}'(u,t)=\cfrac{\partial g(u,t)}{\partial u}=-t+\cfrac{1}{2}t^2+1\\ \displaystyle \int_{g(a)}^{g(b)}\cfrac{d f(x,t)}{dt} dx=\int_{a}^{b}\cfrac{\partial \hat{f}(u,t)}{\partial t}{g}'(u,t) du \end{array} Proof: .. math:: \begin{array}{c} \displaystyle h(x,t)\equiv \cfrac{d f(x,t)}{dt}\\ \displaystyle \hat{h}(u,t)\equiv \cfrac{\partial \hat{f}(u,t)}{\partial t}\\ \end{array} - .. math:: h(x,t) = \hat{h}(u,t) By the Chain Rule, :math:`F(g(u))` is an antiderivative of :math:`h(g(u))\cdot {g}'(u)` whenever :math:`F` is an antiderivative of :math:`h`, beacuse .. math:: \begin{align} \cfrac{d}{du}F(g(u)) & = {F}'(g(u))\cdot {g}'(u)\\ & = h(g(u)){g}'(u) \end{align} If we make the substitution :math:`x=g(u,t)`, then .. math:: \begin{align} \int h(g(u))\cdot {g}'(u)du &= \int \cfrac{d}{du}F(g(u))du\\ &=F(g(u))+C\\ &=F(x)+C\\ &=\int {F}'(x)dx\\ &=\int h(x)dx\\ \end{align} - .. math:: \int h(x)dx = \int h(g(u))\cdot {g}'(u)du Continue to prove If :math:`{g}'` is continuous on the interval :math:`[a,b]` and :math:`h` is continuous on the range of :math:`g(u,t)=x`, then .. math:: \int_{g(a)}^{g(b)}h(x)dx=\int_{a}^{b}h(g(u))\cdot {g}'(u)du Proof Let :math:`F` denote any antiderivative of :math:`h`. Then, .. math:: \begin{aligned} \int_{a}^{b} h(g(x)) \cdot g^{\prime}(x) d x & =F(g(x))\Bigg ]_{x=a}^{x=b} \\ & =F(g(b))-F(g(a)) \\ & =F(u)\Bigg]_{u=g(a)}^{u=g(b)} \\ & =\int_{g(a)}^{g(b)} h(u) d u . \end{aligned}