Substitution
==================================
Substitution for Integrals
---------------------------------------------------------------------------
- `Substitution for Definite Integrals `_
- `Substitution for Definite Integrals-math.libretexts.org `_
- `Lesson Explainer: Integration by Substitution: Definite Integrals `_
- `Substitution Rule for Indefinite Integrals `_
Substitution Rule for Indefinite Integrals
---------------------------------------------------------------------------
If :math:`u=g(x)` is a differential function whose range is an interval :math:`I`, and :math:`f` is continuous on :math:`I`, then
.. math::
\int f(g(x))\cdot {g}'(x)dx = \int f(u)du
Proof
By the Chain Rule, :math:`F(g(x))` is an antiderivative of :math:`f(g(x))\cdot {g}'(x)` whenever :math:`F` is an antiderivative of :math:`f`, beacuse
.. math::
\begin{align}
\cfrac{d}{dx}F(g(x)) & = {F}'(g(x))\cdot {g}'(x)\\ & = f(g(x)){g}'(x)
\end{align}
If we make the substitution :math:`u=g(x)`, then
.. math::
\begin{align}
\int f(g(x))\cdot {g}'(x)dx &= \int \cfrac{d}{dx}F(g(x))dx\\
&=F(g(x))+C\\
&=F(u)+C\\
&=\int {F}'(u)du\\
&=\int f(u)du\\
\end{align}
Substitution In Definite Integrals
---------------------------------------------------------------------------
If :math:`{g}'` is continuous on the interval :math:`[a,b]` and :math:`f` is continuous on the range of
:math:`g(x)=u`, then
.. math::
\int_{a}^{b}f(g(x))\cdot {g}'(x)dx=\int_{g(a)}^{g(b)}f(u)du\\
Proof
Let :math:`F` denote any antiderivative of :math:`f`. Then,
.. math::
\begin{aligned}
\int_{a}^{b} f(g(x)) \cdot g^{\prime}(x) d x & =F(g(x))\Bigg ]_{x=a}^{x=b} \\
& =F(g(b))-F(g(a)) \\
& =F(u)\Bigg]_{u=g(a)}^{u=g(b)} \\
& =\int_{g(a)}^{g(b)} f(u) d u .
\end{aligned}
Substitution Rule for Indefinite Integrals( version 2)
---------------------------------------------------------
For convenience, swap :math:`x` and :math:`u`
If :math:`x=g(u)` is a differential function whose range is an interval :math:`I`, and :math:`f` is continuous on :math:`I`, then
.. math::
\int f(x)dx = \int f(g(u))\cdot {g}'(u)du
Proof
By the Chain Rule, :math:`F(g(u))` is an antiderivative of :math:`f(g(u))\cdot {g}'(u)` whenever :math:`F` is an antiderivative of :math:`f`, beacuse
.. math::
\begin{align}
\cfrac{d}{du}F(g(u)) & = {F}'(g(u))\cdot {g}'(u)\\ & = f(g(u)){g}'(u)
\end{align}
If we make the substitution :math:`x=g(u)`, then
.. math::
\begin{align}
\int f(g(u))\cdot {g}'(u)du &= \int \cfrac{d}{du}F(g(u))du\\
&=F(g(u))+C\\
&=F(x)+C\\
&=\int {F}'(x)dx\\
&=\int f(x)dx\\
\end{align}
Substitution In Definite Integrals( version 2)
---------------------------------------------------------------------------
If :math:`{g}'` is continuous on the interval :math:`[a,b]` and :math:`f` is continuous on the range of
:math:`g(u)=x`, then
.. math::
\int_{g(a)}^{g(b)}f(x)dx=\int_{a}^{b}f(g(u))\cdot {g}'(u)du
Proof
Let :math:`F` denote any antiderivative of :math:`f`. Then,
.. math::
\begin{aligned}
\int_{a}^{b} f(g(x)) \cdot g^{\prime}(x) d x & =F(g(x))\Bigg ]_{x=a}^{x=b} \\
& =F(g(b))-F(g(a)) \\
& =F(u)\Bigg]_{u=g(a)}^{u=g(b)} \\
& =\int_{g(a)}^{g(b)} f(u) d u .
\end{aligned}
Some Example
--------------------
.. math::
\int_{g(a)}^{g(b)}f(x)dx=\int_{a}^{b}f(g(u)){g}'(u) du
-
.. math::
x=g(u)\\
-
.. math::
\left\{\begin{matrix}
u=a,& x=g(a)\\
u=b,& x=g(b)\\
\end{matrix}\right.
-
.. math::
\int_{g(a)}^{g(b)}f(x)dx=\int_{a}^{b}f(g(u))J(u) du\\
-
.. math::
J(u)=\text{det}\begin{bmatrix}
\cfrac{\partial x}{\partial u}
\end{bmatrix}=\text{det}\begin{bmatrix}
\cfrac{\partial g}{\partial u}
\end{bmatrix}=\text{det}\begin{bmatrix}
\cfrac{\text{d} g}{\text{d} u}
\end{bmatrix}=\text{det}\begin{bmatrix}
{g}'(u)
\end{bmatrix}={g}'(u)\\
Example 1:
.. math::
x=g(u,t)=(1-u)t+\frac{1}{2}ut^2+u \\
.. math::
\left\{\begin{matrix}
u=0,t=1,& x=g(u,t)=g(0,1)=1\\
u=1,t=1,& x=g(u,t)=g(1,1)=\frac{1}{2}+1\\
\end{matrix}\right.
Let
.. math::
f(x,t)\equiv 1
then there is
.. math::
\int_{g(a,t)}^{g(b,t)}f(x,t)dx=\int_{1}^{1+\frac{1}{2} }1dx=\frac{1}{2}
-
.. math::
\cfrac{\partial g(u,t)}{\partial u}=\cfrac{\partial [(1-u)t+\frac{1}{2}ut^2+u]}{\partial u}=-t+\frac{1}{2}t^2+1
-
.. math::
\cfrac{\partial g(u,t)}{\partial u}\Bigg|_{t=1}=\cfrac{\partial [(1-u)t+\frac{1}{2}ut^2+u]}{\partial u}\Bigg|_{t=1}=(-t+\frac{1}{2}t^2+1)\Bigg|_{t=1}=\frac{1}{2}
-
.. math::
\int_{g(a,t)}^{g(b,t)}f(x,t)dx=\int_{a(t)}^{b(t)}f(g(u,t),t)\cfrac{\partial g(u,t)}{\partial u} du\\
-
.. math::
\int_{a(t)}^{b(t)}f(g(u,t),t)\cfrac{\partial g(u,t)}{\partial u} du=\int_{0}^{1}1\times\frac{1}{2} du=\frac{1}{2}
Let
.. math::
f(x,t)\equiv x
then there is
.. math::
\int_{g(a,t)}^{g(b,t)}f(x,t)dx=\int_{1}^{1+\frac{1}{2} }xdx=\frac{1}{2}x^2\Bigg|_{1}^{1+\frac{1}{2}}
=\frac{1}{2}((\frac{3}{2})^2-1^{2})=\frac{5}{8}
-
.. math::
\cfrac{\partial g(u,t)}{\partial u}\Bigg|_{t=1}=\cfrac{\partial [(1-u)t+\frac{1}{2}ut^2+u]}{\partial u}\Bigg|_{t=1}=(-t+\frac{1}{2}t^2+1)\Bigg|_{t=1}=\frac{1}{2}
-
.. math::
\int_{g(a,t)}^{g(b,t)}f(x,t)dx=\int_{a(t)}^{b(t)}f(g(u,t),t)\cfrac{\partial g(u,t)}{\partial u} du
-
.. math::
x=g(u,t)=(1-u)t+\frac{1}{2}ut^2+u \\
-
.. math::
\begin{align}
\displaystyle \int_{a(t)}^{b(t)}f(g(u,t),t)\cfrac{\partial g(u,t)}{\partial u} du & = \int_{0}^{1}((1-u)1+\frac{1}{2}u1^2+u)\times\frac{1}{2} du\\
\displaystyle & = \int_{0}^{1}(1+\frac{1}{2}u)\times\frac{1}{2} du\\
\displaystyle& = \frac{1}{2}(u+\frac{1}{4}u^2)\Bigg|_{0}^{1}\\
\displaystyle& = \frac{1}{2}(1+\frac{1}{4})\\
& = \frac{5}{8}
\end{align}
Example 2:
.. math::
\begin{array}{l}
x=g(u,t)\\
f(x,t)=f(g(u,t),t)=\hat{f}(u,t)\\
\cfrac{\text{d}\hat{f}(u,t)}{\text{d}t}\equiv \cfrac{\partial \hat{f}(u,t)}{\partial t}
=\cfrac{\partial {f}(x,t)}{\partial t}+\cfrac{\partial {f}(x,t)}{\partial x}\cfrac{\partial {g}(u,t)}{\partial t}\\
\cfrac{\text{d}\hat{f}}{\text{d}t}\equiv \cfrac{\partial \hat{f}}{\partial t}
=\cfrac{\partial {f}}{\partial t}+\cfrac{\partial {f}}{\partial x}\cfrac{\partial {g}}{\partial t}
\end{array}
-
.. math::
x=g(u,t)=(1-u)t+\frac{1}{2}ut^2+u \\
-
.. math::
\begin{array}{l}
f(x,t)= xt \\
f(x,t)= xt=((1-u)t+\frac{1}{2}ut^2+u)t=\hat{f}(u,t) \\
\hat{f}(u,t)=((1-u)t+\frac{1}{2}ut^2+u)t=((1-u)t^2+\frac{1}{2}ut^3+ut)
\end{array}
-
.. math::
\cfrac{\text{d}\hat{f}(u,t)}{\partial t}\equiv\cfrac{\partial \hat{f}(u,t)}{\partial t}
=\cfrac{\partial ((1-u)t^2+\cfrac{1}{2}ut^3+ut)}{\partial t}
=(2(1-u)t+3\cfrac{1}{2}ut^2+u)
-
.. math::
\cfrac{\partial f(x,t)}{\partial t}=x,\quad\cfrac{\partial f(x,t)}{\partial x}=t\\
-
.. math::
\begin{align}
\cfrac{\partial x}{\partial t} & = \cfrac{\partial g(u,t)}{\partial t}\\
& = \cfrac{\partial ((1-u)t+\frac{1}{2}ut^2+u)}{\partial t}\\
& = (1-u)+ut
\end{align}
-
.. math::
\begin{align}
\cfrac{\text{d}f(x,t)}{\text{d} t} & = \cfrac{\partial {f}(x,t)}{\partial t}+\cfrac{\partial {f}(x,t)}{\partial x}\cfrac{\partial {g}(u,t)}{\partial t}\\
& = x+t((1-u)+ut)\\
& = x+((1-u)t+ut^2)\\
& = ((1-u)t+\frac{1}{2}ut^2+u)+((1-u)t+ut^2)\\
& = (2(1-u)t+\frac{3}{2}ut^2+u)\\
\end{align}
A better understanding of this formula
------------------------------------------------
.. math::
\begin{array}{c}
x=g(u,t)=(1-u)t+\cfrac{1}{2}ut^2+u\\
{g}'(u,t)=\cfrac{\partial g(u,t)}{\partial u}=-t+\cfrac{1}{2}t^2+1\\
\displaystyle \int_{g(a)}^{g(b)}\cfrac{d f(x,t)}{dt} dx=\int_{a}^{b}\cfrac{\partial \hat{f}(u,t)}{\partial t}{g}'(u,t) du
\end{array}
Proof:
.. math::
\begin{array}{c}
\displaystyle h(x,t)\equiv \cfrac{d f(x,t)}{dt}\\
\displaystyle \hat{h}(u,t)\equiv \cfrac{\partial \hat{f}(u,t)}{\partial t}\\
\end{array}
-
.. math::
h(x,t) = \hat{h}(u,t)
By the Chain Rule, :math:`F(g(u))` is an antiderivative of :math:`h(g(u))\cdot {g}'(u)` whenever :math:`F`
is an antiderivative of :math:`h`, beacuse
.. math::
\begin{align}
\cfrac{d}{du}F(g(u)) & = {F}'(g(u))\cdot {g}'(u)\\ & = h(g(u)){g}'(u)
\end{align}
If we make the substitution :math:`x=g(u,t)`, then
.. math::
\begin{align}
\int h(g(u))\cdot {g}'(u)du &= \int \cfrac{d}{du}F(g(u))du\\
&=F(g(u))+C\\
&=F(x)+C\\
&=\int {F}'(x)dx\\
&=\int h(x)dx\\
\end{align}
-
.. math::
\int h(x)dx = \int h(g(u))\cdot {g}'(u)du
Continue to prove
If :math:`{g}'` is continuous on the interval :math:`[a,b]` and :math:`h` is continuous on the range of
:math:`g(u,t)=x`, then
.. math::
\int_{g(a)}^{g(b)}h(x)dx=\int_{a}^{b}h(g(u))\cdot {g}'(u)du
Proof
Let :math:`F` denote any antiderivative of :math:`h`. Then,
.. math::
\begin{aligned}
\int_{a}^{b} h(g(x)) \cdot g^{\prime}(x) d x & =F(g(x))\Bigg ]_{x=a}^{x=b} \\
& =F(g(b))-F(g(a)) \\
& =F(u)\Bigg]_{u=g(a)}^{u=g(b)} \\
& =\int_{g(a)}^{g(b)} h(u) d u .
\end{aligned}