LaTeX ================================== LaTeX is a high-quality typesetting system used to create professional-looking documents, such as academic papers, books, and presentations. LaTeX source code is a markup language similar to programming languages that you can use to indicate the layout, fonts, graphics, mathematical symbols, and more in your document. Here are some useful links related to LaTeX: LaTeX website ---------------------- #. `LaTeX Project: official website for the LaTeX Project `_ #. `Overleaf: an online LaTeX editor `_ #. `LaTeX Wikibook: a comprehensive guide to LaTeX `_ #. `The Not So Short Introduction to LATEX 2ε `_ #. `The Not So Short Introduction to LaTeX `_ #. `List of LaTeX symbols `_ #. `latex中花体字母编写汇总 `_ Online LaTeX editors ---------------------- #. `LaTeXLive `_ #. `Codecogs `_ Common symbols ---------------------- Binary operations ````````````````````` Input: :: + - \times {\div} \pm \mp \triangleleft \triangleright \cdot \setminus \star \ast \cup \cap \sqcup Output: .. math:: + - \times {\div} \pm \mp \triangleleft \triangleright \cdot \setminus \star \ast \cup \cap \sqcup Input: :: \sqcap \vee \wedge \circ \bullet \oplus \ominus \odot \oslash \otimes \bigcirc \diamond \uplus \bigtriangleup \bigtriangledown Output: .. math:: \sqcap \vee \wedge \circ \bullet \oplus \ominus \odot \oslash \otimes \bigcirc \diamond \uplus \bigtriangleup \bigtriangledown Input: :: \lhd \rhd \unlhd \unrhd \amalg \wr \dagger \ddagger Output: .. math:: \lhd \rhd \unlhd \unrhd \amalg \wr \dagger \ddagger Binary relations ````````````````````` Input: :: < > = \le \ge \equiv \ll \gg \doteq \prec \succ \sim \preceq \succeq \simeq Output: .. math:: < > = \le \ge \equiv \ll \gg \doteq \prec \succ \sim \preceq \succeq \simeq Input: :: \approx \subset \supset \subseteq \supseteq \sqsubset \sqsupset \sqsubseteq \sqsupseteq \cong \Join \bowtie \propto \in \ni Output: .. math:: \approx \subset \supset \subseteq \supseteq \sqsubset \sqsupset \sqsubseteq \sqsupseteq \cong \Join \bowtie \propto \in \ni Input: :: \vdash \dashv \models \mid \parallel \perp \smile \frown \asymp : \notin \ne Output: .. math:: \vdash \dashv \models \mid \parallel \perp \smile \frown \asymp : \notin \ne Arrows ````````````````````` Input: :: \gets \to \longleftarrow \longrightarrow \uparrow \downarrow \updownarrow \leftrightarrow \Uparrow \Downarrow \Updownarrow \longleftrightarrow \Leftarrow \Longleftarrow \Rightarrow Output: .. math:: \gets \to \longleftarrow \longrightarrow \uparrow \downarrow \updownarrow \leftrightarrow \Uparrow \Downarrow \Updownarrow \longleftrightarrow \Leftarrow \Longleftarrow \Rightarrow Input: :: \Longrightarrow \Leftrightarrow \Longleftrightarrow \mapsto \longmapsto \nearrow \searrow \swarrow \nwarrow \hookleftarrow \hookrightarrow \rightleftharpoons \iff Output: .. math:: \Longrightarrow \Leftrightarrow \Longleftrightarrow \mapsto \longmapsto \nearrow \searrow \swarrow \nwarrow \hookleftarrow \hookrightarrow \rightleftharpoons \iff Input: :: \leftharpoonup \rightharpoonup \leftharpoondown \rightharpoondown Output: .. math:: \leftharpoonup \rightharpoonup \leftharpoondown \rightharpoondown Others ````````````````````` Input: :: \because \therefore \dots \cdots \vdots \ddots \forall \exists \nexists \Finv \neg \prime \emptyset \infty \nabla Output: .. math:: \because \therefore \dots \cdots \vdots \ddots \forall \exists \nexists \Finv \neg \prime \emptyset \infty \nabla Input: :: \triangle \Box \Diamond \bot \top \angle \measuredangle \sphericalangle \surd \diamondsuit \heartsuit \clubsuit \spadesuit \flat \natural \sharp Output: .. math:: \triangle \Box \Diamond \bot \top \angle \measuredangle \sphericalangle \surd \diamondsuit \heartsuit \clubsuit \spadesuit \flat \natural \sharp Greek alphabet ---------------------- Lowercase ````````````````````` Input: :: \alpha \beta \gamma \delta \epsilon \varepsilon \zeta \eta \theta \vartheta \iota \kappa \lambda \mu Output: .. math:: \alpha \beta \gamma \delta \epsilon \varepsilon \zeta \eta \theta \vartheta \iota \kappa \lambda \mu Input: :: \nu \xi o \pi \varpi \rho \varrho \sigma \varsigma \tau \upsilon \phi \varphi \chi \psi \omega Output: .. math:: \nu \xi o \pi \varpi \rho \varrho \sigma \varsigma \tau \upsilon \phi \varphi \chi \psi \omega Uppercase ````````````````````` Input: :: \Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega Output: .. math:: \Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega Others ````````````````````` Input: :: \hbar \imath \jmath \ell \Re \Im \aleph \beth \gimel \daleth \wp \mho \backepsilon \partial Output: .. math:: \hbar \imath \jmath \ell \Re \Im \aleph \beth \gimel \daleth \wp \mho \backepsilon \partial Input: :: \eth \Bbbk \complement \circledS \S \mathbb{a} \mathfrak{a} \mathcal{a} \mathrm {a} \mathrm{def} Output: .. math:: \eth \Bbbk \complement \circledS \S \mathbb{a} \mathfrak{a} \mathcal{a} \mathrm {a} \mathrm{def} Fractions & Derivative ----------------------- Fractions ````````````````````` Input: :: \frac{a}{b} \tfrac{a}{b} \mathrm{d}t \frac{\mathrm{d} y}{\mathrm{d} x} \partial t \frac{\partial y}{\partial x} \nabla\psi \frac{\partial^2}{\partial x_1\partial x_2}y Output: .. math:: \frac{a}{b} \tfrac{a}{b} \mathrm{d}t \frac{\mathrm{d} y}{\mathrm{d} x} \partial t \frac{\partial y}{\partial x} \nabla\psi \frac{\partial^2}{\partial x_1\partial x_2}y Input: :: \cfrac{1}{a + \cfrac{7}{b + \cfrac{2}{9}}} =c Output: .. math:: \cfrac{1}{a + \cfrac{7}{b + \cfrac{2}{9}}} =c Input: :: \begin{equation} x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{a_4} } } } \end{equation} Output: .. math:: \begin{equation} x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{a_4} } } } \end{equation} Derivative ````````````````````` Input: :: \dot{a} \ddot{a} {f}' {f}'' {f}^{(n)} Output: .. math:: \dot{a} \ddot{a} {f}' {f}'' {f}^{(n)} Modular arithmetic ````````````````````` Input: :: a \bmod b a \equiv b \pmod{m} \gcd(m, n) \operatorname{lcm}(m, n) Output: .. math:: a \bmod b a \equiv b \pmod{m} \gcd(m, n) \operatorname{lcm}(m, n) Radicals ````````````````````` Input: :: \sqrt{x} \sqrt[n]{x} Output: .. math:: \sqrt{x} \sqrt[n]{x} Superscript and Subscript ``````````````````````````` Input: :: x^{a} \ x_{a} \ x_{a}^{b} \ {_{a}^{b}x} \ \sideset{_1^2}{_3^4}X_a^b Output: .. math:: x^{a} \ x_{a} \ x_{a}^{b} \ {_{a}^{b}x} \ \sideset{_1^2}{_3^4}X_a^b Accents and Others ``````````````````````````` Input: :: \hat{a} \check{a} \grave{a} \acute{a} \tilde{a} \breve{a} \bar{a} \vec{a} \not{a} Output: .. math:: \hat{a} \check{a} \grave{a} \acute{a} \tilde{a} \breve{a} \bar{a} \vec{a} \not{a} Input: :: 37^{\circ} \ \widetilde{abc} \ \widehat{abc} \ \overleftarrow{abc} \ \overrightarrow{abc} Output: .. math:: 37^{\circ} \ \widetilde{abc} \ \widehat{abc} \ \overleftarrow{abc} \ \overrightarrow{abc} Input: :: \overline{abc} \ \underline{abc} \ \overbrace{abc} \ \underbrace{abc} Output: .. math:: \overline{abc} \ \underline{abc} \ \overbrace{abc} \ \underbrace{abc} Input: :: \overset{x}{abc} \ \underset{x}{abc} \ \stackrel\frown{AB} \ \overline{AB} \ \overleftrightarrow{AB} Output: .. math:: \overset{x}{abc} \ \underset{x}{abc} \ \stackrel\frown{AB} \ \overline{AB} \ \overleftrightarrow{AB} Input: :: \overset{a}{\leftarrow} \ \overset{a}{\rightarrow} \ \xleftarrow[abc]{x} \ \xrightarrow[abc]{x} Output: .. math:: \overset{a}{\leftarrow} \ \overset{a}{\rightarrow} \ \xleftarrow[abc]{x} \ \xrightarrow[abc]{x} Limits class ------------------------------ Limits ``````````````````````````` Input: :: \lim{a} \ \lim_{x \to 0} \ \lim_{x \to \infty} \textstyle \ \lim_{x \to 0} \max_x{y} \min_x{y} Output: .. math:: \lim{a} \ \lim_{x \to 0} \ \lim_{x \to \infty} \textstyle \ \lim_{x \to 0} \max_x{y} \min_x{y} Logarithms and exponentials ``````````````````````````` Input: :: \log_{a}{b} \ \lg_{a}{b} \ \ln_{a}{b} \ \exp a Output: .. math:: \log_{a}{b} \ \lg_{a}{b} \ \ln_{a}{b} \ \exp a Bounds ``````````````````````````` :: \min x \max y \sup t \inf s \lim u \limsup w \liminf v \dim p \ker\phi Output: .. math:: \min x \max y \sup t \inf s \lim u \limsup w \liminf v \dim p \ker\phi Trigonometry class ------------------------------ Trigonometric functions `````````````````````````````` Input: :: \sin x \cos x \tan x \cot x \sec x \csc x Output: .. math:: \sin x \cos x \tan x \cot x \sec x \csc x Inverse trigonometric functions ````````````````````````````````` Input: :: \sin^{-1} x \cos^{-1} x \tan^{-1} x \cot^{-1} x \sec^{-1} x \arcsin x \arccos x Output: .. math:: \sin^{-1} x \cos^{-1} x \tan^{-1} x \cot^{-1} x \sec^{-1} x \arcsin x \arccos x Input: :: \arctan x \operatorname{arccot} x \operatorname{arcsec} x \operatorname{arccos} x Output: .. math:: \arctan x \operatorname{arccot} x \operatorname{arcsec} x \operatorname{arccos} x Hyperbolic functions ````````````````````````````````` Input: :: \sinh x \cosh x \tanh x \coth x \operatorname{sech} x \operatorname{csch} x Output: .. math:: \sinh x \cosh x \tanh x \coth x \operatorname{sech} x \operatorname{csch} x Inverse hyperbolic functions ````````````````````````````````` Input: :: \sinh^{-1} x \cosh^{-1} x \tanh^{-1} x \coth^{-1} x \operatorname{sech}^{-1} x \operatorname{csch}^{-1}x Output: .. math:: \sinh^{-1} x \cosh^{-1} x \tanh^{-1} x \coth^{-1} x \operatorname{sech}^{-1} x \operatorname{csch}^{-1}x Integral operation ---------------------------- Integral ````````````````````````````````` Input: :: \int x \int_{a}^{b} x \int\limits_{a}^{b} x Output: .. math:: \int x \int_{a}^{b} x \int\limits_{a}^{b} x Double integral ````````````````````````````````` Input: :: \iint x \iint_{a}^{b} x \iint\limits_{a}^{b} x Output: .. math:: \iint x \iint_{a}^{b} x \iint\limits_{a}^{b} x Triple integral ````````````````````````````````` Input: :: \iiint x \iiint_{a}^{b} x \iiint\limits_{a}^{b} x Output: .. math:: \iiint x \iiint_{a}^{b} x \iiint\limits_{a}^{b} x Closed line or path integral ````````````````````````````````` Input: :: \oint x \oint_{a}^{b} x Output: .. math:: \oint x \oint_{a}^{b} x Summation ````````````````````````````````` Input: :: \sum s \sum_{a}^{b} s {\textstyle \sum_{a}^{b}} s Output: .. math:: \sum s \sum_{a}^{b} s {\textstyle \sum_{a}^{b}} s Product and coproduct ````````````````````````````````` Input: :: \prod \prod_{a}^{b} {\textstyle \prod_{a}^{b}} \coprod \coprod_{a}^{b} {\textstyle \coprod_{a}^{b}} Output: .. math:: \prod \prod_{a}^{b} {\textstyle \prod_{a}^{b}} \coprod \coprod_{a}^{b} {\textstyle \coprod_{a}^{b}} Union and intersection ````````````````````````````````` Input: :: \bigcup \bigcup_{a}^{b} {\textstyle \bigcup_{a}^{b}} \bigcap \bigcap_{a}^{b} {\textstyle \bigcap_{a}^{b}} Output: .. math:: \bigcup \bigcup_{a}^{b} {\textstyle \bigcup_{a}^{b}} \bigcap \bigcap_{a}^{b} {\textstyle \bigcap_{a}^{b}} Disjunction and cojunction ````````````````````````````````` Input: :: \bigvee \bigvee_{a}^{b} {\textstyle \bigvee_{a}^{b}} \bigwedge \bigwedge_{a}^{b} {\textstyle \bigwedge_{a}^{b}} Output: .. math:: \bigvee \bigvee_{a}^{b} {\textstyle \bigvee_{a}^{b}} \bigwedge \bigwedge_{a}^{b} {\textstyle \bigwedge_{a}^{b}} Brackets ````````````````````````````````` Input: :: \left ( a \right ) \left [ a \right ] \left \langle a \right \rangle \left \{ a \right \} \left | a \right | \left \| a \right \| \left \lfloor a \right \rfloor \left \lceil a \right \rceil Output: .. math:: \left ( a \right ) \left [ a \right ] \left \langle a \right \rangle \left \{ a \right \} \left | a \right | \left \| a \right \| \left \lfloor a \right \rfloor \left \lceil a \right \rceil Input: :: \binom{n}{r} \left [ 0,1 \right ) \left \langle \psi \right | \left | \psi \right \rangle \left \langle \psi | \psi \right \rangle Output: .. math:: \binom{n}{r} \left [ 0,1 \right ) \left \langle \psi \right | \left | \psi \right \rangle \left \langle \psi | \psi \right \rangle Matrix ````````````````````````````````` Input: :: \begin{matrix} 1&2 &3 \\ 4&5 &6 \end{matrix} Output: .. math:: \begin{matrix} 1&2 &3 \\ 4&5 &6 \end{matrix} Input: :: \begin{bmatrix} 1&2 &3 \\ 4&5 &6 \end{bmatrix} Output: .. math:: \begin{bmatrix} 1&2 &3 \\ 4&5 &6 \end{bmatrix} Input: :: \begin{pmatrix} 1&2 &3 \\ 4&5 &6 \end{pmatrix} Output: .. math:: \begin{pmatrix} 1&2 &3 \\ 4&5 &6 \end{pmatrix} Input: :: \begin{vmatrix} 1&2 &3 \\ 4&5 &6 \end{vmatrix} Output: .. math:: \begin{vmatrix} 1&2 &3 \\ 4&5 &6 \end{vmatrix} Input: :: \begin{Vmatrix} 1&2 &3 \\ 4&5 &6 \end{Vmatrix} Output: .. math:: \begin{Vmatrix} 1&2 &3 \\ 4&5 &6 \end{Vmatrix} Input: :: \begin{Bmatrix} 1&2 &3 \\ 4&5 &6 \end{Bmatrix} Output: .. math:: \begin{Bmatrix} 1&2 &3 \\ 4&5 &6 \end{Bmatrix} Input: :: \left\{\begin{matrix} 1&2 &3 \\ 4&5 &6 \end{matrix}\right. Output: .. math:: \left\{\begin{matrix} 1&2 &3 \\ 4&5 &6 \end{matrix}\right. Input: :: \left.\begin{matrix} 1&2 &3 \\ 4&5 &6 \end{matrix}\right\} Output: .. math:: \left.\begin{matrix} 1&2 &3 \\ 4&5 &6 \end{matrix}\right\} Input: :: \begin{cases} 1& \text{ if } x= 2\\ 3& \text{ if } x=4 \end{cases} Output: .. math:: \begin{cases} 1& \text{ if } x= 2\\ 3& \text{ if } x=4 \end{cases} Input: :: \begin{align*} y&=1 \\ x&=2 \end{align*} Output: .. math:: \begin{align*} y&=1 \\ x&=2 \end{align*} Formula Template ---------------------- Algebra ````````````````````````````````` Input: :: \left(x-1\right)\left(x+3\right) Output: .. math:: \left(x-1\right)\left(x+3\right) Input: :: \sqrt{a^2+b^2} Output: .. math:: \sqrt{a^2+b^2} Input: :: \frac{a}{b}\pm \frac{c}{d}= \frac{ad \pm bc}{bd} Output: .. math:: \frac{a}{b}\pm \frac{c}{d}= \frac{ad \pm bc}{bd} Input: :: \frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0 Output: .. math:: \frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0 Input: :: x ={-b \pm \sqrt{b^2-4ac}\over 2a} Output: .. math:: x ={-b \pm \sqrt{b^2-4ac}\over 2a} Input: :: \left\{\begin{matrix} x=a + r\text{cos}\theta \\ y=b + r\text{sin}\theta \end{matrix}\right. Output: .. math:: \left\{\begin{matrix} x=a + r\text{cos}\theta \\ y=b + r\text{sin}\theta \end{matrix}\right. Input: :: \left ( \frac{a}{b}\right )^{n}= \frac{a^{n}}{b^{n}} Output: .. math:: \left ( \frac{a}{b}\right )^{n}= \frac{a^{n}}{b^{n}} Input: :: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 Output: .. math:: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 Input: :: \sqrt[n]{a^{n}}=\left ( \sqrt[n]{a}\right )^{n} Output: .. math:: \sqrt[n]{a^{n}}=\left ( \sqrt[n]{a}\right )^{n} Input: :: y-y_{1}=k \left( x-x_{1}\right) Output: .. math:: y-y_{1}=k \left( x-x_{1}\right) Input: :: \begin{array}{l} \text{For equations of the form: }x^{3}-1=0 \\ \text{let}\text{:}\omega =\frac{-1+\sqrt{3}i}{2} \\ x_{1}=1,x_{2}= \omega =\frac{-1+\sqrt{3}i}{2} \\ x_{3}= \omega ^{2}=\frac{-1-\sqrt{3}i}{2} \end{array} Output: .. math:: \begin{array}{l} \text{For equations of the form: }x^{3}-1=0 \\ \text{let}\text{:}\omega =\frac{-1+\sqrt{3}i}{2} \\ x_{1}=1,x_{2}= \omega =\frac{-1+\sqrt{3}i}{2} \\ x_{3}= \omega ^{2}=\frac{-1-\sqrt{3}i}{2} \end{array} Input: :: \begin{array}{l} a\mathop{{x}}\nolimits^{{2}}+bx+c=0 \\ \Delta =\mathop{{b}}\nolimits^{{2}}-4ac \\ \mathop{{x}}\nolimits_{{1,2}}=\frac{{-b \pm \sqrt{{\mathop{{b}}\nolimits^{{2}}-4ac}}}}{{2a}} \\ \mathop{{x}}\nolimits_{{1}}+\mathop{{x}}\nolimits_{{2}}=-\frac{{b}}{{a}} \\ \mathop{{x}}\nolimits_{{1}}\mathop{{x}}\nolimits_{{2}}=\frac{{c}}{{a}} \end{array} Output: .. math:: \begin{array}{l} a\mathop{{x}}\nolimits^{{2}}+bx+c=0 \\ \Delta =\mathop{{b}}\nolimits^{{2}}-4ac \\ \mathop{{x}}\nolimits_{{1,2}}=\frac{{-b \pm \sqrt{{\mathop{{b}}\nolimits^{{2}}-4ac}}}}{{2a}} \\ \mathop{{x}}\nolimits_{{1}}+\mathop{{x}}\nolimits_{{2}}=-\frac{{b}}{{a}} \\ \mathop{{x}}\nolimits_{{1}}\mathop{{x}}\nolimits_{{2}}=\frac{{c}}{{a}} \end{array} Input: :: \begin{array}{l} a\mathop{{x}}\nolimits^{{2}}+bx+c=0 \\ \Delta =\mathop{{b}}\nolimits^{{2}}-4ac \\ \left\{\begin{matrix} \Delta \gt 0\text{ The equation has two distinct real roots} \\ \Delta = 0\text{ The equation has two equal real roots} \\ \Delta \lt 0\text{ The equation has two complex roots} \end{matrix}\right. \end{array} Output: .. math:: \begin{array}{l} a\mathop{{x}}\nolimits^{{2}}+bx+c=0 \\ \Delta =\mathop{{b}}\nolimits^{{2}}-4ac \\ \left\{\begin{matrix} \Delta \gt 0\text{ The equation has two distinct real roots} \\ \Delta = 0 \text{ The equation has two equal real roots }\quad \\ \Delta \lt 0\text{ The equation has two complex roots}\qquad \end{matrix}\right. \end{array} Space ````````````````````````````````` Input: :: \begin{array}{l} a\quad b \\ a\qquad b \\ a\enspace b \\ a\;b \\ a\:b \\ a\,b \\ a\!b \end{array} Output: .. math:: \begin{array}{l} a\quad b \\ a\qquad b \\ a\enspace b \\ a\;b \\ a\:b \\ a\,b \\ a\!b \end{array} Geometry ````````````````````````````````` Input: :: \begin{array}{l} \Delta A B C \\ l \perp \beta ,l \subset \alpha \Rightarrow \alpha \perp \beta \\ a \parallel c,b \parallel c \Rightarrow a \parallel b \\ P \in \alpha ,P \in \beta , \alpha \cap \beta =l \Rightarrow P \in l \\ A \in l,B \in l,A \in \alpha ,B \in \alpha \Rightarrow l \subset \alpha \end{array} Output: .. math:: \begin{array}{l} \Delta A B C \\ l \perp \beta ,l \subset \alpha \Rightarrow \alpha \perp \beta \\ a \parallel c,b \parallel c \Rightarrow a \parallel b \\ P \in \alpha ,P \in \beta , \alpha \cap \beta =l \Rightarrow P \in l \\ A \in l,B \in l,A \in \alpha ,B \in \alpha \Rightarrow l \subset \alpha \end{array} Input: :: \left.\begin{matrix} a \perp \alpha \\ b \perp \alpha \end{matrix}\right\}\Rightarrow a \parallel b Output: .. math:: \left.\begin{matrix} a \perp \alpha \\ b \perp \alpha \end{matrix}\right\}\Rightarrow a \parallel b Input: :: \left.\begin{matrix} a \subset \beta ,b \subset \beta ,a \cap b=P \\ a \parallel \partial ,b \parallel \partial \end{matrix}\right\}\Rightarrow \beta \parallel \alpha Output: .. math:: \left.\begin{matrix} a \subset \beta ,b \subset \beta ,a \cap b=P \\ a \parallel \partial ,b \parallel \partial \end{matrix}\right\}\Rightarrow \beta \parallel \alpha Input: :: \begin{array}{c} \alpha \perp \beta , \alpha \cap \beta =l,a \subset \alpha ,a \perp l \Rightarrow a \perp \beta \\ \alpha \parallel \beta , \gamma \cap \alpha =a, \gamma \cap \beta =b \Rightarrow a \parallel b \\ a^{2}+b^{2}=c^{2} \end{array} Output: .. math:: \begin{array}{c} \alpha \perp \beta , \alpha \cap \beta =l,a \subset \alpha ,a \perp l \Rightarrow a \perp \beta \\ \alpha \parallel \beta , \gamma \cap \alpha =a, \gamma \cap \beta =b \Rightarrow a \parallel b \\ a^{2}+b^{2}=c^{2} \end{array} Inequality ````````````````````````````````` Input: :: \begin{array}{c} a > b,b > c \Rightarrow a > c \\ a > b > 0,c > d > 0 \Rightarrow ac > bd \\ a > b,c > d \Rightarrow a+c > b+d \\ \left | a-b \right | \geqslant \left | a \right | -\left | b \right | \\ \left | a \right |\leqslant b \Rightarrow -b \leqslant a \leqslant \left | b \right | \\ -\left | a \right |\leq a\leqslant \left | a \right | \\ \left | a+b \right | \leqslant \left | a \right | + \left | b \right | \end{array} Output: .. math:: \begin{array}{c} a > b,b > c \Rightarrow a > c \\ a > b > 0,c > d > 0 \Rightarrow ac > bd \\ a > b,c > d \Rightarrow a+c > b+d \\ \left | a-b \right | \geqslant \left | a \right | -\left | b \right | \\ \left | a \right |\leqslant b \Rightarrow -b \leqslant a \leqslant \left | b \right | \\ -\left | a \right |\leq a\leqslant \left | a \right | \\ \left | a+b \right | \leqslant \left | a \right | + \left | b \right | \end{array} Input: :: \begin{array}{c} a \gt b,c \gt 0 \Rightarrow ac \gt bc \\ a \gt b,c \lt 0 \Rightarrow ac \lt bc \end{array} Output: .. math:: \begin{array}{c} a \gt b,c \gt 0 \Rightarrow ac \gt bc \\ a \gt b,c \lt 0 \Rightarrow ac \lt bc \end{array} Input: :: \begin{array}{c} a \gt b \gt 0,n \in N^{\ast},n \gt 1 \\ \Rightarrow a^{n}\gt b^{n}, \sqrt[n]{a}\gt \sqrt[n]{b} \end{array} Output: .. math:: \begin{array}{c} a \gt b \gt 0,n \in N^{\ast},n \gt 1 \\ \Rightarrow a^{n}\gt b^{n}, \sqrt[n]{a}\gt \sqrt[n]{b} \end{array} Input: :: \left( \sum_{k=1}^n a_k b_k \right)^{\!\!2}\leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) Output: .. math:: \left( \sum_{k=1}^n a_k b_k \right)^{\!\!2}\leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) Input: :: \begin{array}{c} a,b \in R^{+} \\ \Rightarrow \frac{a+b}{{2}}\ge \sqrt{ab} \\ \left( \text{Equality holds if and only if }a=b\right) \end{array} Output: .. math:: \begin{array}{c} a,b \in R^{+} \\ \Rightarrow \frac{a+b}{{2}}\ge \sqrt{ab} \\ \left( \text{Equality holds if and only if }a=b\right) \end{array} Input: :: \begin{array}{c} a,b \in R \\ \Rightarrow a^{2}+b^{2}\ge 2ab \\ \left( \text{Equality holds if and only if }a=b\right) \end{array} Output: .. math:: \begin{array}{c} a,b \in R \\ \Rightarrow a^{2}+b^{2}\ge 2ab \\ \left( \text{Equality holds if and only if }a=b\right) \end{array} Input: :: \begin{array}{c} H_{n}=\frac{n}{\sum \limits_{i=1}^{n}\frac{1}{x_{i}}}= \frac{n}{\frac{1}{x_{1}}+ \frac{1}{x_{2}}+ \cdots + \frac{1}{x_{n}}} \\ G_{n}=\sqrt[n]{\prod \limits_{i=1}^{n}x_{i}}= \sqrt[n]{x_{1}x_{2}\cdots x_{n}} \\ A_{n}=\frac{1}{n}\sum \limits_{i=1}^{n}x_{i}=\frac{x_{1}+ x_{2}+ \cdots + x_{n}}{n} \\ Q_{n}=\sqrt{\sum \limits_{i=1}^{n}x_{i}^{2}}= \sqrt{\frac{x_{1}^{2}+ x_{2}^{2}+ \cdots + x_{n}^{2}}{n}} \\ H_{n}\leq G_{n}\leq A_{n}\leq Q_{n} \end{array} Output: .. math:: \begin{array}{c} H_{n}=\frac{n}{\sum \limits_{i=1}^{n}\frac{1}{x_{i}}}= \frac{n}{\frac{1}{x_{1}}+ \frac{1}{x_{2}}+ \cdots + \frac{1}{x_{n}}} \\ G_{n}=\sqrt[n]{\prod \limits_{i=1}^{n}x_{i}}= \sqrt[n]{x_{1}x_{2}\cdots x_{n}} \\ A_{n}=\frac{1}{n}\sum \limits_{i=1}^{n}x_{i}=\frac{x_{1}+ x_{2}+ \cdots + x_{n}}{n} \\ Q_{n}=\sqrt{\sum \limits_{i=1}^{n}x_{i}^{2}}= \sqrt{\frac{x_{1}^{2}+ x_{2}^{2}+ \cdots + x_{n}^{2}}{n}} \\ H_{n}\leq G_{n}\leq A_{n}\leq Q_{n} \end{array} Integral ````````````````````````````````` Input: :: \begin{array}{l} \frac{\mathrm{d}}{\mathrm{d}x}x^n=nx^{n-1} \\ \frac{\mathrm{d}}{\mathrm{d}x}\ln(x)=\frac{1}{x} \\ \frac{\mathrm{d}}{\mathrm{d}x}\cos x=-\sin x \\ \frac{\mathrm{d}}{\mathrm{d}x}\tan x=\sec^2 x \\ \int \frac{1}{x}\mathrm{d}x= \ln \left| x \right| +C \\ \int \frac{1}{1+x^{2}}\mathrm{d}x= \arctan x +C \\ f(x) = \int_{-\infty}^\infty \hat f(x)\xi\,e^{2 \pi i \xi x} \,\mathrm{d}\xi \end{array} Output: .. math:: \begin{array}{l} \frac{\mathrm{d}}{\mathrm{d}x}x^n=nx^{n-1} \\ \frac{\mathrm{d}}{\mathrm{d}x}\ln(x)=\frac{1}{x} \\ \frac{\mathrm{d}}{\mathrm{d}x}\cos x=-\sin x \\ \frac{\mathrm{d}}{\mathrm{d}x}\tan x=\sec^2 x \\ \int \frac{1}{x}\mathrm{d}x= \ln \left| x \right| +C \\ \int \frac{1}{1+x^{2}}\mathrm{d}x= \arctan x +C \\ f(x) = \int_{-\infty}^\infty \hat f(x)\xi\,e^{2 \pi i \xi x} \,\mathrm{d}\xi \end{array} Input: :: \begin{array}{l} \frac{\mathrm{d}}{\mathrm{d}x}e^{ax}=a\,e^{ax} \\ \frac{\mathrm{d}}{\mathrm{d}x}\sin x=\cos x \\ \int k\mathrm{d}x = kx+C \\ \frac{\mathrm{d}}{\mathrm{d}x}\cot x=-\csc^2 x \\ \int \frac{1}{\sqrt{1-x^{2}}}\mathrm{d}x= \arcsin x +C \\ \int u \frac{\mathrm{d}v}{\mathrm{d}x}\,\mathrm{d}x=uv-\int \frac{\mathrm{d}u}{\mathrm{d}x}v\,\mathrm{d}x \\ \int x^{\mu}\mathrm{d}x=\frac{x^{\mu +1}}{\mu +1}+C, \left({\mu \neq -1}\right) \end{array} Output: .. math:: \begin{array}{l} \frac{\mathrm{d}}{\mathrm{d}x}e^{ax}=a\,e^{ax} \\ \frac{\mathrm{d}}{\mathrm{d}x}\sin x=\cos x \\ \int k\mathrm{d}x = kx+C \\ \frac{\mathrm{d}}{\mathrm{d}x}\cot x=-\csc^2 x \\ \int \frac{1}{\sqrt{1-x^{2}}}\mathrm{d}x= \arcsin x +C \\ \int u \frac{\mathrm{d}v}{\mathrm{d}x}\,\mathrm{d}x=uv-\int \frac{\mathrm{d}u}{\mathrm{d}x}v\,\mathrm{d}x \\ \int x^{\mu}\mathrm{d}x=\frac{x^{\mu +1}}{\mu +1}+C, \left({\mu \neq -1}\right) \end{array} Matrix ````````````````````````````````` Input: :: \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} Output: .. math:: \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} Input: :: \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} Output: .. math:: \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} Input: :: \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} Output: .. math:: \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} Input: :: O = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} Output: .. math:: O = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} Input: :: A_{m\times n}= \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}& a_{m2}& \cdots & a_{mn} \end{bmatrix} =\left [ a_{ij}\right ] Output: .. math:: A_{m\times n}= \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}& a_{m2}& \cdots & a_{mn} \end{bmatrix} =\left [ a_{ij}\right ] Input: :: \begin{array}{c} A={\left[ a_{ij}\right]_{m \times n}},B={\left[ b_{ij}\right]_{n \times s}} \\ c_{ij}= \sum \limits_{k=1}^{{n}}a_{ik}b_{kj} \\ C=AB=\left[ c_{ij}\right]_{m \times s} = \left[ \sum \limits_{k=1}^{n}a_{ik}b_{kj}\right]_{m \times s} \end{array} Output: .. math:: \begin{array}{c} A={\left[ a_{ij}\right]_{m \times n}},B={\left[ b_{ij}\right]_{n \times s}} \\ c_{ij}= \sum \limits_{k=1}^{{n}}a_{ik}b_{kj} \\ C=AB=\left[ c_{ij}\right]_{m \times s} = \left[ \sum \limits_{k=1}^{n}a_{ik}b_{kj}\right]_{m \times s} \end{array} Input: :: \mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i}& \mathbf{j}& \mathbf{k} \\ \frac{\partial X}{\partial u}& \frac{\partial Y}{\partial u}& 0 \\ \frac{\partial X}{\partial v}& \frac{\partial Y}{\partial v}& 0 \\ \end{vmatrix} Output: .. math:: \mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i}& \mathbf{j}& \mathbf{k} \\ \frac{\partial X}{\partial u}& \frac{\partial Y}{\partial u}& 0 \\ \frac{\partial X}{\partial v}& \frac{\partial Y}{\partial v}& 0 \\ \end{vmatrix} Input: :: \begin{array}{c} A=A^{T} \\ A=-A^{T} \end{array} Output: .. math:: \begin{array}{c} A=A^{T} \\ A=-A^{T} \end{array} Triangle ````````````````````````````````` Input: :: \begin{array}{l} e^{i \theta} \\ \text{sin}^{2}\frac{\alpha}{2}=\frac{1- \text{cos}\alpha}{2} \\ \text{tan}\frac{\alpha}{2}=\frac{\text{sin}\alpha}{1+ \text{cos}\alpha} \\ \sin \alpha - \sin \beta =2 \cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} \\ \cos \alpha - \cos \beta =-2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} \\ \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2R} \\ \sin \left ( \frac{\pi}{2}+\alpha \right ) = \cos \alpha \end{array} Output: .. math:: \begin{array}{l} e^{i \theta} \\ \text{sin}^{2}\frac{\alpha}{2}=\frac{1- \text{cos}\alpha}{2} \\ \text{tan}\frac{\alpha}{2}=\frac{\text{sin}\alpha}{1+ \text{cos}\alpha} \\ \sin \alpha - \sin \beta =2 \cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} \\ \cos \alpha - \cos \beta =-2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} \\ \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2R} \\ \sin \left ( \frac{\pi}{2}+\alpha \right ) = \cos \alpha \end{array} Input: :: \begin{array}{l} \left(\frac{\pi}{2}-\theta \right ) \\ \text{cos}^{2}\frac{\alpha}{2}=\frac{1+ \text{cos}\alpha}{2} \\ \sin \alpha + \sin \beta =2 \sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} \\ \cos \alpha + \cos \beta =2 \cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} \\ a^{2}=b^{2}+c^{2}-2bc\cos A \\ \sin \left ( \frac{\pi}{2}-\alpha \right ) = \cos \alpha \end{array} Output: .. math:: \begin{array}{l} \left(\frac{\pi}{2}-\theta \right ) \\ \text{cos}^{2}\frac{\alpha}{2}=\frac{1+ \text{cos}\alpha}{2} \\ \sin \alpha + \sin \beta =2 \sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} \\ \cos \alpha + \cos \beta =2 \cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} \\ a^{2}=b^{2}+c^{2}-2bc\cos A \\ \sin \left ( \frac{\pi}{2}-\alpha \right ) = \cos \alpha \end{array} Statistics ````````````````````````````````` Input: :: \begin{array}{l} C_{r}^{n} \\ \sum_{i=1}^{n}{X_i} \\ X_1, \cdots,X_n \\ \sum_{i=1}^{n}{(X_i - \overline{X})^2} \\ P(E) ={n \choose k}p^k (1-p)^{n-k} \\ \end{array} Output: .. math:: \begin{array}{l} C_{r}^{n} \\ \sum_{i=1}^{n}{X_i} \\ X_1, \cdots,X_n \\ \sum_{i=1}^{n}{(X_i - \overline{X})^2} \\ P(E) ={n \choose k}p^k (1-p)^{n-k} \\ \end{array} Input: :: \begin{array}{l} \frac{n!}{r!(n-r)!} \\ \sum_{i=1}^{n}{X_i^2} \\ \frac{x-\mu}{\sigma} \\ P \left( A \right) = \lim \limits_{n \to \infty}f_{n}\left ( A \right ) \\ \end{array} Output: .. math:: \begin{array}{l} \frac{n!}{r!(n-r)!} \\ \sum_{i=1}^{n}{X_i^2} \\ \frac{x-\mu}{\sigma} \\ P \left( A \right) = \lim \limits_{n \to \infty}f_{n}\left ( A \right ) \\ \end{array} Input: :: P \left( \bigcup \limits_{i=1}^{+ \infty}A_{i}\right) = \prod \limits_{i=1}^{+ \infty}P{\left( A_{i}\right)} Output: .. math:: P \left( \bigcup \limits_{i=1}^{+ \infty}A_{i}\right) = \prod \limits_{i=1}^{+ \infty}P{\left( A_{i}\right)} Input: :: P \left( \bigcup \limits_{i=1}^{n}A_{i}\right) = \prod \limits_{i=1}^{n}P \left( A_{i}\right) Output: .. math:: P \left( \bigcup \limits_{i=1}^{n}A_{i}\right) = \prod \limits_{i=1}^{n}P \left( A_{i}\right) Input: :: \begin{array}{c} \forall A \in S \\ P \left( A \right) \ge 0 \end{array} Output: .. math:: \begin{array}{c} \forall A \in S \\ P \left( A \right) \ge 0 \end{array} Input: :: \begin{array}{c} P \left( \emptyset \right) =0 \\ P \left( S \right) =1 \end{array} Output: .. math:: \begin{array}{c} P \left( \emptyset \right) =0 \\ P \left( S \right) =1 \end{array} Input: :: \begin{array}{c} S= \binom{N}{n},A_{k}=\binom{M}{k}\cdot \binom{N-M}{n-k} \\ P\left ( A_{k}\right ) = \frac{\binom{M}{k}\cdot \binom{N-M}{n-k}}{\binom{N}{n}} \end{array} Output: .. math:: \begin{array}{c} S= \binom{N}{n},A_{k}=\binom{M}{k}\cdot \binom{N-M}{n-k} \\ P\left ( A_{k}\right ) = \frac{\binom{M}{k}\cdot \binom{N-M}{n-k}}{\binom{N}{n}} \end{array} Input: :: \begin{array}{c} P_{n}=n! \\ A_{n}^{k}=\frac{n!}{\left( n-k \left) !\right. \right.} \end{array} Output: .. math:: \begin{array}{c} P_{n}=n! \\ A_{n}^{k}=\frac{n!}{\left( n-k \left) !\right. \right.} \end{array} Input: :: \begin{array}{c} \text{If } P(AB) = P(A)P(B) \\ \text{then } P(A|B) = \dfrac{P(B)}{1-P(\overline{B})} \end{array} Output: .. math:: \begin{array}{c} \text{If } P(AB) = P(A)P(B) \\ \text{then } P(A|B) = \dfrac{P(B)}{1-P(\overline{B})} \end{array} Sequence ````````````````````````````````` Input: :: \begin{array}{l} a_{n}=a_{1}q^{n-1} \\ S_{n}=na_{1}+\frac{n \left( n-1 \right)}{{2}}d \\ \frac{1}{n \left( n+k \right)}= \frac{1}{k}\left( \frac{1}{n}-\frac{1}{n+k}\right) \\ \frac{1}{4n^{2}-1}=\frac{1}{2}\left( \frac{1}{2n-1}-\frac{1}{2n+1}\right) \\ \end{array} Output: .. math:: \begin{array}{l} a_{n}=a_{1}q^{n-1} \\ S_{n}=na_{1}+\frac{n \left( n-1 \right)}{{2}}d \\ \frac{1}{n \left( n+k \right)}= \frac{1}{k}\left( \frac{1}{n}-\frac{1}{n+k}\right) \\ \frac{1}{4n^{2}-1}=\frac{1}{2}\left( \frac{1}{2n-1}-\frac{1}{2n+1}\right) \\ \end{array} Input: :: \begin{array}{l} a_{n}=a_{1}+ \left( n-1 \left) d\right. \right. \\ S_{n}=\frac{n \left( a_{1}+a_{n}\right)}{2} \\ \frac{1}{n^{2}-1}= \frac{1}{2}\left( \frac{1}{n-1}-\frac{1}{n+1}\right) \\ \frac{n+1}{n \left( n-1 \left) \cdot 2^{n}\right. \right.}= \frac{1}{\left( n-1 \left) \cdot 2^{n-1}\right. \right.}-\frac{1}{n \cdot 2^{n}} \\ (1+x)^{n} =1 + \frac{nx}{1!} + \frac{n(n-1)x^{2}}{2!} + \cdots \end{array} Output: .. math:: \begin{array}{l} a_{n}=a_{1}+ \left( n-1 \left) d\right. \right. \\ S_{n}=\frac{n \left( a_{1}+a_{n}\right)}{2} \\ \frac{1}{n^{2}-1}= \frac{1}{2}\left( \frac{1}{n-1}-\frac{1}{n+1}\right) \\ \frac{n+1}{n \left( n-1 \left) \cdot 2^{n}\right. \right.}= \frac{1}{\left( n-1 \left) \cdot 2^{n-1}\right. \right.}-\frac{1}{n \cdot 2^{n}} \\ (1+x)^{n} =1 + \frac{nx}{1!} + \frac{n(n-1)x^{2}}{2!} + \cdots \end{array} Input: :: \begin{array}{c} \text{If}\left \{a_{n}\right \},\left \{b_{n}\right \}\text{are arithmetic progressions}, \\ \text{then}\left \{a_{n}+ b_{n}\right \}\text{is an arithmetic progression.} \end{array} Output: .. math:: \begin{array}{c} \text{If}\left \{a_{n}\right \},\left \{b_{n}\right \}\text{are arithmetic progressions}, \\ \text{then}\left \{a_{n}+ b_{n}\right \}\text{is an arithmetic progression.} \end{array} Physics ````````````````````````````````` Input: :: \sum {{{ \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} }_i}} = \frac{{d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over v} }}{{dt}} = 0 Output: .. math:: \sum {{{ \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} }_i}} = \frac{{d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over v} }}{{dt}} = 0 Input: :: {{ \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} }_{12}} = - {{ \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} }_{21}} Output: .. math:: {{ \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} }_{12}} = - {{ \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} }_{21}} Input: :: \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} = k \frac{{Qq}}{{{r^2}}} \hat{r} Output: .. math:: \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} = k \frac{{Qq}}{{{r^2}}} \hat{r} Input: :: d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over B} = \frac{{{ \mu _0}}}{{4 \pi }} \frac{{Idl \times \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over r} }}{{{r^3}}} = \frac{{{ \mu _0}}}{{4 \pi }} \frac{{Idl \sin \theta }}{{{r^2}}} Output: .. math:: d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over B} = \frac{{{ \mu _0}}}{{4 \pi }} \frac{{Idl \times \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over r} }}{{{r^3}}} = \frac{{{ \mu _0}}}{{4 \pi }} \frac{{Idl \sin \theta }}{{{r^2}}} Input: :: E = n{{ \Delta \Phi } \over {\Delta {t} }} Output: .. math:: E = n{{ \Delta \Phi } \over {\Delta {t} }} Input: :: \oint { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over E} \cdot {d\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over l}} = - {{d{\varphi _B}} \over {dt}}} Output: .. math:: \oint { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over E} \cdot {d\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over l}} = - {{d{\varphi _B}} \over {dt}}} Input: :: Q = I ^ { 2 } R \mathrm { t } Output: .. math:: Q = I ^ { 2 } R \mathrm { t } Input: :: {E_k} = hv - {W_0} Output: .. math:: {E_k} = hv - {W_0} Input: :: \Delta {x} \Delta {p} \ge \frac{h}{{4 \pi }} Output: .. math:: \Delta {x} \Delta {p} \ge \frac{h}{{4 \pi }} Input: :: {y_0} = A \cos ( \omega {t} + { \varphi _0}) Output: .. math:: {y_0} = A \cos ( \omega {t} + { \varphi _0}) Input: :: \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} = m \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over a} = m \frac{{{d^2} \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over r} }}{{d{t^2}}} Output: .. math:: \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} = m \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over a} = m \frac{{{d^2} \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over r} }}{{d{t^2}}} Input: :: {E_p} = -\frac{{GMm}}{r} Output: .. math:: {E_p} = -\frac{{GMm}}{r} Input: :: \oint_L { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over E} } \cdot { \rm{d}} \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over l} = 0 Output: .. math:: \oint_L { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over E} } \cdot { \rm{d}} \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over l} = 0 Input: :: d \vec{F}= Id \vec{l} \times \vec{B} Output: .. math:: d \vec{F}= Id \vec{l} \times \vec{B} Input: :: \mathop \Phi \nolimits_e = \oint { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over E} \cdot {d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over S}} = {1 \over {{\varepsilon _0}}}\sum {q} } Output: .. math:: \mathop \Phi \nolimits_e = \oint { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over E} \cdot {d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over S}} = {1 \over {{\varepsilon _0}}}\sum {q} } Input: :: \oint { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over B} \cdot {d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over l}} = { \mu _0}} I + { \mu _0}{I_d} Output: .. math:: \oint { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over B} \cdot {d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over l}} = { \mu _0}} I + { \mu _0}{I_d} Input: :: F = G{{Mm} \over {{r^2}}} Output: .. math:: F = G{{Mm} \over {{r^2}}} Input: :: \lambda = \frac{{ \frac{{{c^2}}}{v}}}{{ \frac{{m{c^2}}}{h}}} = \frac{h}{{mv}} = \frac{h}{p} Output: .. math:: \lambda = \frac{{ \frac{{{c^2}}}{v}}}{{ \frac{{m{c^2}}}{h}}} = \frac{h}{{mv}} = \frac{h}{p} Input: :: l = {l_0} \sqrt {1 - {{( \frac{v}{c})}^2}} Output: .. math:: l = {l_0} \sqrt {1 - {{( \frac{v}{c})}^2}} Input: :: y(t) = A \cos ( \frac{{2 \pi {x}}}{ \lambda } + \varphi ) Output: .. math:: y(t) = A \cos ( \frac{{2 \pi {x}}}{ \lambda } + \varphi ) Input: :: \begin{array}{l} \nabla \cdot \mathbf{E} =\cfrac{\rho}{\varepsilon _0} \\ \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{E} = -\cfrac{\partial \mathbf{B}}{\partial t } \\ \nabla \times \mathbf{B} = \mu _0\mathbf{J} + \mu _0\varepsilon_0 \cfrac{\partial \mathbf{E}}{\partial t } \end{array} Output: .. math:: \begin{array}{l} \nabla \cdot \mathbf{E} =\cfrac{\rho}{\varepsilon _0} \\ \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{E} = -\cfrac{\partial \mathbf{B}}{\partial t } \\ \nabla \times \mathbf{B} = \mu _0\mathbf{J} + \mu _0\varepsilon_0 \cfrac{\partial \mathbf{E}}{\partial t } \end{array} Input: :: %Unicode extension support needs to be enabled in settings for this formula. \begin{array}{l} {\huge \unicode{8751}}_\mathbb{S} \mathbf{E} \cdot\mathrm{d}s= \cfrac{Q}{\varepsilon_0} \\ {\huge \unicode{8751}}_\mathbb{S} \mathbf{B} \cdot\mathrm{d}s= 0 \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{E} \cdot \mathrm{d}l=-\cfrac{\mathrm{d}\Phi _{\mathbf{B}}}{\mathrm{d}t } \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{B} \cdot \mathrm{d}l=\mu_0I+ \mu_0 \varepsilon_0\cfrac{\mathrm{d}\Phi _{\mathbf{E}}}{\mathrm{d}t } \end{array} Output: .. math:: %Unicode extension support needs to be enabled in settings for this formula. \begin{array}{l} {\huge \unicode{8751}}_\mathbb{S} \mathbf{E} \cdot\mathrm{d}s= \cfrac{Q}{\varepsilon_0} \\ {\huge \unicode{8751}}_\mathbb{S} \mathbf{B} \cdot\mathrm{d}s= 0 \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{E} \cdot \mathrm{d}l=-\cfrac{\mathrm{d}\Phi _{\mathbf{B}}}{\mathrm{d}t } \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{B} \cdot \mathrm{d}l=\mu_0I+ \mu_0 \varepsilon_0\cfrac{\mathrm{d}\Phi _{\mathbf{E}}}{\mathrm{d}t } \end{array} Input: :: \begin{array}{l} \nabla \cdot \mathbf{D} =\rho _f \\ \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{E} = -\cfrac{\partial \mathbf{B}}{\partial t } \\ \nabla \times \mathbf{H} = \mathbf{J}_f + \cfrac{\partial \mathbf{D}}{\partial t } \end{array} Output: .. math:: \begin{array}{l} \nabla \cdot \mathbf{D} =\rho _f \\ \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{E} = -\cfrac{\partial \mathbf{B}}{\partial t } \\ \nabla \times \mathbf{H} = \mathbf{J}_f + \cfrac{\partial \mathbf{D}}{\partial t } \end{array} Input: :: %Unicode extension support needs to be enabled in settings for this formula. \begin{array}{l} {\huge \unicode{8751}}_\mathbb{S} \mathbf{D} \cdot\mathrm{d}s= Q_f \\ {\huge \unicode{8751}}_\mathbb{S} \mathbf{B} \cdot\mathrm{d}s= 0 \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{E} \cdot \mathrm{d}l=-\cfrac{\mathrm{d}\Phi _{\mathbf{B}}}{\mathrm{d}t } \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{H} \cdot \mathrm{d}l=I_f+\cfrac{\mathrm{d}\Phi _{\mathbf{D}}}{\mathrm{d}t } \end{array} Output: .. math:: %Unicode extension support needs to be enabled in settings for this formula. \begin{array}{l} {\huge \unicode{8751}}_\mathbb{S} \mathbf{D} \cdot\mathrm{d}s= Q_f \\ {\huge \unicode{8751}}_\mathbb{S} \mathbf{B} \cdot\mathrm{d}s= 0 \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{E} \cdot \mathrm{d}l=-\cfrac{\mathrm{d}\Phi _{\mathbf{B}}}{\mathrm{d}t } \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{H} \cdot \mathrm{d}l=I_f+\cfrac{\mathrm{d}\Phi _{\mathbf{D}}}{\mathrm{d}t } \end{array} Chemical ````````````````````````````````` Input: :: %This formula requires enabling the mhchem extension support in the 【Settings】. \ce{SO4^2- + Ba^2+ -> BaSO4 v} Output: .. math:: %This formula requires enabling the mhchem extension support in the 【Settings】. \ce{SO4^2- + Ba^2+ -> BaSO4 v} Input: :: \ce{A v B (v) -> B ^ B (^)} Output: .. math:: \ce{A v B (v) -> B ^ B (^)} Input: :: \ce{Hg^2+ ->[I-] $\underset{\mathrm{red}}{\ce{HgI2}}$ ->[I-] $\underset{\mathrm{red}}{\ce{[Hg^{II}I4]^2-}}$} Output: .. math:: \ce{Hg^2+ ->[I-] $\underset{\mathrm{red}}{\ce{HgI2}}$ ->[I-] $\underset{\mathrm{red}}{\ce{[Hg^{II}I4]^2-}}$} Input: :: \ce{Zn^2+ <=>[+ 2OH-][+ 2H+] $\underset{\text{amphoteres Hydroxid}}{\ce{Zn(OH)2 v}}$ <=>[+ 2OH-][+ 2H+] $\underset{\text{Hydroxozikat}}{\ce{[Zn(OH)4]^2-}}$} Output: .. math:: \ce{Zn^2+ <=>[+ 2OH-][+ 2H+] $\underset{\text{amphoteres Hydroxid}}{\ce{Zn(OH)2 v}}$ <=>[+ 2OH-][+ 2H+] $\underset{\text{Hydroxozikat}}{\ce{[Zn(OH)4]^2-}}$} Big --------------------- Input: :: ( \big( \Big( \bigg( \Bigg( Output: .. math:: ( \big( \Big( \bigg( \Bigg(