跳转至

OneFLOW-Example

OneFLOW documentation visit eric2003.github.io/OneFLOW.

Heat Equation

1d-Heat Equation

\[ \frac{\partial u}{\partial t} =\alpha \frac{\partial ^{2}u}{\partial x^{2}} \]

FTCS

\[ \frac{u^{(n+1)}_{i}-u^{(n)}_{i}}{\Delta t} = \alpha \frac{u^{(n)}_{i+1}-2u^{(n)}_{i}+u^{(n)}_{i-1}}{\Delta x^2} \]
\[ u^{(n+1)}_{i}=u^{(n)}_{i}+ \alpha\frac{\Delta t}{\Delta x^2}(u^{(n)}_{i+1}-2u^{(n)}_{i}+u^{(n)}_{i-1}) \]
\[ \beta =\alpha\frac{\Delta t}{\Delta x^2} \]
\[ u^{(n+1)}_{i}=u^{(n)}_{i}+ \beta (u^{(n)}_{i+1}-2u^{(n)}_{i}+u^{(n)}_{i-1}) \]
Julia
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
@printf( "t = %f\n", t)
@printf( "dt = %f\n", dt)
@printf( "nt = %i\n", nt)
@printf( "nx = %i\n", nx)
output:
t = 1.000000
dt = 0.002500
nt = 400
nx = 80
#i=1,81
for i = 1:nx+1
    x[i] = x_l + dx*(i-1)  # location of each grid point
    un[1,i] = -sin(pi*x[i]) # initial condition @ t=0
    u_e[i] = -exp(-t)*sin(pi*x[i]) # initial condition @ t=0
end

#k=2,401
for k = 2:nt+1
    @printf( "k = %i\n", k)
    for i = 2:nx
        un[k,i] = un[k-1,i] + beta*(un[k-1,i+1] -
                                2.0*un[k-1,i] + un[k-1,i-1])
    end
    un[k,1] = 0.0 # boundary condition at x = -1
    un[k,nx+1] = 0.0 # boundary condition at x = -1
end
C++
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
std::cout << "dt = " << dt << "\n";
std::cout << "t = " << t << "\n";
std::cout << "nt = " << nt << "\n";
std::cout << "ni = " << ni << "\n";
dt = 0.0025
t = 1
nt = 400
ni = 81
//i=0,ni-1
//i=0,80
for ( int i = 0; i < ni; ++ i )
{
    u_e[ i ] = - std::exp( -t ) * std::sin( std::numbers::pi * x[i] ); //theory solution
    un[ i ] = - std::sin( std::numbers::pi * x[ i ] ); //initial condition @ t=0
}
un[ 0 ] = 0.0;
un[ ni - 1 ] = 0.0;

//it=0,nt-1
for ( int it = 0; it < nt; ++ it )
{
    for ( int i = 1; i < ni - 1; ++ i )
    {
        u[ i ] = un[ i ] + beta * ( un[ i + 1 ] - 2.0 * un[ i ] + un[ i - 1 ] );
    }
    //boundary
    u[ 0 ] = 0.0; // boundary condition at x = -1
    u[ ni - 1 ] = 0.0; // boundary condition at x = 1
    this->update( un, u );
}
C++
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
ni = 81
dt = 0.0025
t = 1
nt = 400
ni = 81
alpha = 0.101321183642338
beta = 0.405284734569351

ni = 41
dt = 0.0025
t = 1
nt = 400
ni = 41
alpha = 0.101321183642338
beta = 0.405284734569351
ni = 41
dt = 0.0025
t = 1
nt = 400
ni = 41
alpha = 0.101321183642338
beta = 0.405284734569351

int nghost = 2;
int ni_total = ni + nghost;
ni_total = 43

ghost -1.0             0.0 ghost
  0    1   2  ... 40   41  42
                   0    1   2   3  ... 40  41   42
                 ghost 0.0                -1.0  ghost
#zone 0: 1,41 x[0]-x[40]=[-1,0.0]
for ( int i = ist; i <= ied; ++ i )
{
    double xm = x[ i - ist ];
    u_e[ i ] = - std::exp( -total_time ) * std::sin( std::numbers::pi * xm ); //theory solution
    u[ i ] = - std::sin( std::numbers::pi * xm ); //initial condition @ t=0
}
zone[0] -1.0                 0.0
        x[0] x[1] ... x[39] x[40]
   u[0] u[1] u[2] ... u[40] u[41] u[42]
zone[1]                      0.0                  1.0
                            x[0]  x[1] ... x[39] x[40]
                      u[0]  u[1]  u[2] ... u[40] u[41] u[42]

#zone 1: 1,41 x[0]-x[40]=[0.0,1.0]
for ( int i = ist; i <= ied; ++ i )
{
    double xm = x[ i - ist ];
    u_e[ i ] = - std::exp( -total_time ) * std::sin( std::numbers::pi * xm ); //theory solution
    u[ i ] = - std::sin( std::numbers::pi * xm ); //initial condition @ t=0
}

PhysicalBoundary();
InflowBc
this->u[ ighost ] = 2 * this->u[ i ] - this->u[ iinner ];
u0[0] = 2 * u0[ 1 ] - u0[ 2 ];
OutflowBc
this->u[ ighost ] = 2 * this->u[ i ] - this->u[ iinner ];
u1[42] = 2 * u1[ 41 ] - u1[ 40 ];

ExchangeInterfaceField()

for ( int iZone = 0; iZone < nZones; ++ iZone )
{
    Field * field = Global::fields[ iZone ];
    field->Update( field->un, field->u );
}

void Field::Update( std::vector<double> &un, std::vector<double> &u )
{
    for ( int i = 0; i < u.size(); ++ i )
    {
        un[ i ] = u[ i ];
    }
}

#u_e_total
ni_total = 81
   -1.0                    0.0                     1.0
   x [0] x [1] ... x [39] x [40] x [41] ... x [79] x [80]
   u0[1] u0[2] ... u0[40] u1[1 ] u1[2 ] ... u1[40] u1[41]
   u [0] u [1] ... u [39] u [40] u [41] ... u [79] u [80]

void Field::Solve( Zone * zone )
{
    int nghost = 2;
    int ni_total = ni + nghost;

    int ist = 1;
    int ied = ni;

    for ( int i = ist; i <= ied; ++ i )
    {
        u[ i ] = un[ i ] + beta * ( un[ i + 1 ] - 2.0 * un[ i ] + un[ i - 1 ] );
    }

    this->PhysicalBoundary( zone );

    this->Update( un, u );
}

ghost -1.0             0.0 ghost
  0    1   2  ... 40   41  42
                   0    1   2   3  ... 40  41   42
                 ghost 0.0                -1.0  ghost

        double term1 = un[ i - 1 ];
        double term2 = un[ i ];
        double term3 = un[ i + 1 ];
        double term4 = term1 -2.0 * term2 + term3;
        double term5 = beta * term4;
        double term6 = term2 + term5;

zone 0
        double term1 = un[ 40 ];
        double term2 = un[ 41 ];
        double term3 = un[ 42 ];
zone 1
        double term1 = un[ 0 ];
        double term2 = un[ 1 ];
        double term3 = un[ 2 ];

zone->zoneIndex = 0
term1 = 0.0782630487959513065909789
term2 = -2.812227774049929009031494e-16
term3 = -0.07845909572784535990219723

zone->zoneIndex = 1
term1 = 0.07845909572784466601280684
term2 = -2.812227774049929009031494e-16
term3 = -0.07826304879595158414673506   

Runge-Kutta Numerical Scheme

\[ \begin{align} u_{i}^{(1)} & = u_{i}^{(n)}+\frac{\alpha \Delta t}{\Delta x^{2}}\left(u_{i+1}^{(n)}-2 u_{i}^{(n)}+u_{i-1}^{(n)}\right),\\ u_{i}^{(2)} & = \frac{3}{4} u_{i}^{(n)}+\frac{1}{4} u_{i}^{(1)}+\frac{1}{4}\frac{\alpha \Delta t}{ \Delta x^{2}}\left(u_{i+1}^{(1)}-2 u_{i}^{(1)}+u_{i-1}^{(1)}\right) \\ u_{i}^{(n+1)} & = \frac{1}{3} u_{i}^{(n)}+\frac{2}{3} u_{i}^{(2)}+\frac{2}{3}\frac{\alpha \Delta t}{\Delta x^{2}}\left(u_{i+1}^{(2)}-2 u_{i}^{(2)}+u_{i-1}^{(2)}\right) . \end{align} \]

Thomas algorithm

C++
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import std;

void thomas_algorithm( const std::vector<double> & a,
    const std::vector<double> & b,
    const std::vector<double> & c,
    const std::vector<double> & d,
    std::vector<double> & x )
{
    size_t N = d.size();

    std::vector<double> c_star( N, 0.0 );
    std::vector<double> d_star( N, 0.0 );

    c_star[ 0 ] = c[ 0 ] / b[ 0 ];
    d_star[ 0 ] = d[ 0 ] / b[ 0 ];

    for ( int i = 1; i < N; ++ i )
    {
        double coef = 1.0 / ( b[ i ] - a[ i ] * c_star[ i - 1 ] );
        c_star[ i ] = c[ i ] * coef;
        d_star[ i ] = ( d[ i ] - a[ i ] * d_star[ i - 1 ] ) * coef;
    }

    x[ N - 1 ] = d_star[ N - 1 ];

    for ( int i = N - 2; i >= 0; -- i )
    {
        x[ i ] = d_star[ i ] - c_star[ i ] * x[ i + 1 ];
    }
}

int main( int argc, char ** argv )
{
    //std::vector<double> a{ 0, -1, -1, -1, -1, -1 }; // 下对角线  
    //std::vector<double> b{ 2,  2,  2,  2,  2,  2 }; // 主对角线  
    //std::vector<double> c{ -1, -1, -1, -1, -1, 0 }; // 上对角线  
    //std::vector<double> d{ 1, 0, 0, 0, 0, 1 }; // 右边的常数向量  
    //std::vector<double> x( d.size() ); // 结果向量  

    std::vector<double> a{ 0, -1, -1, -1, -1 }; // 下对角线  
    std::vector<double> b{ 2,  2,  2,  2,  2 }; // 主对角线  
    std::vector<double> c{ -1, -1, -1, -1, 0 }; // 上对角线  
    std::vector<double> d{ 1.0, 1.0, 1.0, 1.0, 1.0 }; // 右边的常数向量  
    std::vector<double> x( d.size() ); // 结果向量  

    thomas_algorithm( a, b, c, d, x );
    for ( auto v : x )
    {
        std::print( "{} ", v );
    }

    return 0;
}
C++
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include <iostream>  
#include <mpi.h>  
#include <vector>  

void thomas_algorithm(double* a, double* b, double* c, double* d, double* x, int n) {  
    // 前向消元  
    for (int i = 1; i < n; ++i) {  
        double w = a[i - 1] / b[i - 1];  
        b[i] -= w * c[i - 1];  
        d[i] -= w * d[i - 1];  
    }  

    // 后向替代  
    x[n - 1] = d[n - 1] / b[n - 1];  
    for (int i = n - 2; i >= 0; --i) {  
        x[i] = (d[i] - c[i] * x[i + 1]) / b[i];  
    }  
}  

int main(int argc, char** argv) {  
    MPI_Init(&argc, &argv);  

    int rank, size;  
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);  
    MPI_Comm_size(MPI_COMM_WORLD, &size);  

    const int n = 6; // 假设矩阵大小为6  
    double a[n - 1] = { -1, -1, -1, -1, -1 }; // 下对角线  
    double b[n] = {  2,  2,  2,  2,  2,  2 }; // 主对角线  
    double c[n - 1] = { -1, -1, -1, -1, -1 }; // 上对角线  
    double d[n] = { 1, 0, 0, 0, 0, 1 }; // 右边的常数向量  
    double x[n]; // 结果向量  

    // 将问题划分给各个进程  
    int local_n = n / size; // 每个进程处理的条目数量,假设n可以被size整除  

    // 这里假设每个处理器只计算固定的一部分  
    // 进行并行的前向消元  
    for (int i = 0; i < size; ++i) {  
        if (rank == i) {  
            thomas_algorithm(a + i * local_n, b + i * local_n, c + i * local_n, d + i * local_n, x + i * local_n, local_n);  
        }  
        MPI_Bcast(x, n, MPI_DOUBLE, i, MPI_COMM_WORLD); // 广播结果  
    }  

    if (rank == 0) {  
        std::cout << "Solution: ";  
        for (int i = 0; i < n; ++i) {  
            std::cout << x[i] << " ";  
        }  
        std::cout << std::endl;  
    }  

    MPI_Finalize();  
    return 0;  
}  

线性方程组的矩阵和向量

\[ A = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2 \end{bmatrix} \]
\[ b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \]
\[ \begin{align*} \begin{bmatrix} 2 & -1 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \end{align*} \]

理论解

通过手动或数值方法求解该方程组,我们得到以下理论解:

\[ \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \]

Crank–Nicolson scheme

\[ \cfrac{\partial u}{ \partial t}=\alpha \cfrac{\partial ^{2}u}{ \partial x^{2}} \]
\[ \cfrac{u^{n+1}_{i}-u^{n}_{i}}{\Delta t}=\cfrac{1}{2}\cfrac{\alpha}{\Delta x^{2}} \left[(u^{n+1}_{i+1}-2u^{n+1}_{i}+u^{n+1}_{i-1})+(u^{n}_{i+1}-2u^{n}_{i}+u^{n}_{i-1})\right] \]
\[ r=\cfrac{1}{2}\cfrac{\alpha\Delta t}{\Delta x^{2}} \]
\[ -ru^{n+1}_{i+1}+(1+2r)u^{n+1}_{i}-ru^{n+1}_{i-1}=ru^{n}_{i+1}+(1-2r)u^{n}_{i}+ru^{n}_{i-1} \]
\[ -ru^{n+1}_{i-1}+(1+2r)u^{n+1}_{i}-ru^{n+1}_{i+1}=ru^{n}_{i-1}+(1-2r)u^{n}_{i}+ru^{n}_{i+1} \]
C++
1
2
o  |  *  *      *    *   |   o  
0  1  2  3 ... ni-2 ni-1 ni ni+1
\[ \begin{matrix} a_{1}u^{n+1}_{0}+b_{1}u^{n+1}_{1}+c_{1}u^{n+1}_{2}=d_{1}\\ a_{2}u^{n+1}_{1}+b_{2}u^{n+1}_{2}+c_{2}u^{n+1}_{3}=d_{2}\\ ...\\ a_{i}u^{n+1}_{i-1}+b_{i}u^{n+1}_{i}+c_{i}u^{n+1}_{i+1}=d_{i} \\ ...\\ a_{N-1}u^{n+1}_{N-2}+b_{N-1}u^{n+1}_{N-2}+c_{N-1}u^{n+1}_{N}=d_{N-1} \\ a_{N}u^{n+1}_{N-1}+b_{N}u^{n+1}_{N}+c_{N}u^{n+1}_{N+1}=d_{N} \\ \end{matrix} \]
\[ \begin{align} a_{i} & = -r \\ b_{i} & = 1+2r\\ c_{i} & = -r\\ d_{i} & = ru^{n}_{i-1}+(1-2r)u^{n}_{i}+ru^{n}_{i+1}\\ \end{align} \]
\[ \begin{matrix} b_{1}u^{n+1}_{1}+c_{1}u^{n+1}_{2}=d_{1}-a_{1}u^{n+1}_{0}\\ a_{2}u^{n+1}_{1}+b_{2}u^{n+1}_{2}+c_{2}u^{n+1}_{3}=d_{2}\\ ...\\ a_{i}u^{n+1}_{i-1}+b_{i}u^{n+1}_{i}+c_{i}u^{n+1}_{i+1}=d_{i} \\ ...\\ a_{N-1}u^{n+1}_{N-2}+b_{N-1}u^{n+1}_{N-2}+c_{N-1}u^{n+1}_{N}=d_{N-1} \\ a_{N}u^{n+1}_{N-1}+b_{N}u^{n+1}_{N}=d_{N}-c_{N}u^{n+1}_{N+1} \\ \end{matrix} \]
\[ \begin{matrix} b_{1}u^{n+1}_{1}+c_{1}u^{n+1}_{2}=\hat{d}_{1}=d_{1}-a_{1}u^{n+1}_{0}\\ a_{2}u^{n+1}_{1}+b_{2}u^{n+1}_{2}+c_{2}u^{n+1}_{3}=\hat{d}_{2}=d_{2}\\ ...\\ a_{i}u^{n+1}_{i-1}+b_{i}u^{n+1}_{i}+c_{i}u^{n+1}_{i+1}=\hat{d}_{i}=d_{i} \\ ...\\ a_{N-1}u^{n+1}_{N-2}+b_{N-1}u^{n+1}_{N-2}+c_{N-1}u^{n+1}_{N}=\hat{d}_{N-1}=d_{N-1} \\ a_{N}u^{n+1}_{N-1}+b_{N}u^{n+1}_{N}=\hat{d}_{N}=d_{N}-c_{N}u^{n+1}_{N+1} \\ \end{matrix} \]

Boundary

1、 $$ u_{ghost}=2u_{b}-u_{inner} $$

C++
1
2
3
Error details: 
L-2 Norm = 0.002943958856671853
Maximum Norm = 0.007626445297898438

2、 $$ u_{ghost}=-u_{inner} $$

C++
1
2
3
Error details: 
L-2 Norm = 0.0001264755106943961
Maximum Norm = 0.00018037920997449053

Parallel solving tridiagonal matrix

C++
1
2
3
4
5
6
1.
Factor the original matrix into a product of a block matrix (that can be divided up between processors) and a reduced matrix, which couples the block problems.
2.
Solve each block problem with one processor.
3.
Solve the reduced matrix problem.
Let us consider the problem of solving the linear system

\[ A\mathbf{x}=\mathbf{f} \]

whose coefficient matrix is tridiagonal,

\[ A=\begin{pmatrix} a_{1}&c_{1} && && \\ b_{2}&a_{2}&c_{2} & & & \\ &.&. &. & \\ &&. &. &.& \\ && &. &.&c_{n-1} \\ && & &b_{n}&a_{n} \\ \end{pmatrix} \]
\[ \mathbf{f}=\begin{pmatrix} f_{1}&\cdots &f_{n} \end{pmatrix}^{T}, \mathbf{x}=\begin{pmatrix} x_{1}&\cdots &x_{n} \end{pmatrix}^{T} \]

The Visual Room

Parallel-Cyclic-Reduction

The Cyclic Reduction Algorithm

Gauss-Elimination

C++
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
//Gauss Elimination
#include<iostream>
#include<iomanip>
using namespace std;
int main()
{
    int n,i,j,k;
    cout.precision(4);        //set precision
    cout.setf(ios::fixed);
    cout<<"\nEnter the no. of equations\n";        
    cin>>n;                //input the no. of equations
    float a[n][n+1],x[n];        //declare an array to store the elements of augmented-matrix    
    cout<<"\nEnter the elements of the augmented-matrix row-wise:\n";
    for (i=0;i<n;i++)
        for (j=0;j<=n;j++)    
            cin>>a[i][j];    //input the elements of array
    for (i=0;i<n;i++)                    //Pivotisation
        for (k=i+1;k<n;k++)
            if (abs(a[i][i])<abs(a[k][i]))
                for (j=0;j<=n;j++)
                {
                    double temp=a[i][j];
                    a[i][j]=a[k][j];
                    a[k][j]=temp;
                }
    cout<<"\nThe matrix after Pivotisation is:\n";
    for (i=0;i<n;i++)            //print the new matrix
    {
        for (j=0;j<=n;j++)
            cout<<a[i][j]<<setw(16);
        cout<<"\n";
    }    
    for (i=0;i<n-1;i++)            //loop to perform the gauss elimination
        for (k=i+1;k<n;k++)
            {
                double t=a[k][i]/a[i][i];
                for (j=0;j<=n;j++)
                    a[k][j]=a[k][j]-t*a[i][j];    //make the elements below the pivot elements equal to zero or elimnate the variables
            }

    cout<<"\n\nThe matrix after gauss-elimination is as follows:\n";
    for (i=0;i<n;i++)            //print the new matrix
    {
        for (j=0;j<=n;j++)
            cout<<a[i][j]<<setw(16);
        cout<<"\n";
    }
    for (i=n-1;i>=0;i--)                //back-substitution
    {                        //x is an array whose values correspond to the values of x,y,z..
        x[i]=a[i][n];                //make the variable to be calculated equal to the rhs of the last equation
        for (j=i+1;j<n;j++)
            if (j!=i)            //then subtract all the lhs values except the coefficient of the variable whose value                                   is being calculated
                x[i]=x[i]-a[i][j]*x[j];
        x[i]=x[i]/a[i][i];            //now finally divide the rhs by the coefficient of the variable to be calculated
    }
    cout<<"\nThe values of the variables are as follows:\n";
    for (i=0;i<n;i++)
        cout<<x[i]<<endl;            // Print the values of x, y,z,....    
    return 0;
}

Numerical Methods

C++
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#include <iostream>  
#include <vector>  
#include <iomanip>  

using namespace std;  

void gaussElimination(vector<vector<double>>& a, vector<double>& b) {  
    int n = a.size();  

    // 消元过程  
    for (int i = 0; i < n; ++i) {  
        // 找到当前列的最大值  
        double maxVal = abs(a[i][i]);  
        int maxRow = i;  
        for (int k = i + 1; k < n; k++) {  
            if (abs(a[k][i]) > maxVal) {  
                maxVal = abs(a[k][i]);  
                maxRow = k;  
            }  
        }  
        swap(a[i], a[maxRow]);  
        swap(b[i], b[maxRow]);  

        // 进行消元  
        for (int j = i + 1; j < n; j++) {  
            double factor = a[j][i] / a[i][i];  
            for (int k = i; k < n; k++) {  
                a[j][k] -= factor * a[i][k];  
            }  
            b[j] -= factor * b[i];  
        }  
    }  

    // 回代过程  
    vector<double> x(n);  
    for (int i = n - 1; i >= 0; i--) {  
        x[i] = b[i];  
        for (int j = i + 1; j < n; j++) {  
            x[i] -= a[i][j] * x[j];  
        }  
        x[i] /= a[i][i];  
    }  

    // 输出结果  
    for (int i = 0; i < n; i++) {  
        cout << "x" << i + 1 << " = " << setprecision(6) << fixed << x[i] << endl;  
    }  
}  

int main() {  
    int n;  
    cout << "请输入未知数的数量: ";  
    cin >> n;  

    vector<vector<double>> a(n, vector<double>(n));  
    vector<double> b(n);  

    cout << "请输入增广矩阵的系数:\n";  
    for (int i = 0; i < n; i++) {  
        for (int j = 0; j < n; j++) {  
            cin >> a[i][j];  
        }  
        cin >> b[i];  
    }  

    gaussElimination(a, b);  

    return 0;  
}  

上三角方程组

\[ \left\{\begin{matrix} u_{11}x_{1}&+ u_{12}x_{2}&+\cdots &+u_{1,n-1}x_{n-1}&+u_{1n}x_{n}&=b_{1}\\ &u_{22}x_{2}&+\cdots &+u_{2,n-1}x_{n-1}&+u_{2n}x_{n}&=b_{2}\\ &&\cdots\\ &&&u_{n-1,n-1}x_{n-1}&+u_{n-1,n}x_{n}&=b_{n-1}\\ &&&&u_{nn}x_{n}&=b_{n}\\ \end{matrix}\right. \]
\[ u_{ii}x_{i} +u_{i,i+1}x_{i+1}+\cdots+u_{in}x_{n}=b_{i} \]
\[ x_{i}=\frac{b_{i}-\sum_{j=i+1}^{n} u_{ij}x_{j}}{u_{ii}} \]
C++
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
Input: For N unknowns, input is an augmented 
       matrix of size N x (N+1). One extra 
       column is for Right Hand Side (RHS)
  mat[N][N+1] = {{3.0, 2.0,-4.0, 3.0},
                {2.0, 3.0, 3.0, 15.0},
                {5.0, -3, 1.0, 14.0}
               };
Output: Solution to equations is:
        3.000000
        1.000000
        2.000000
Explanation:
Given matrix represents following equations
3.0X1 + 2.0X2 - 4.0X3 =  3.0
2.0X1 + 3.0X2 + 3.0X3 = 15.0
5.0X1 - 3.0X2 +    X3 = 14.0
There is a unique solution for given equations, 
solutions is, X1 = 3.0, X2 = 1.0, X3 = 2.0, 

gaussElimination( std::vector> & a, std::vector & b )

C++
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#include <vector>  
#include <print>

void Print( std::vector<double> & x );
void Print( std::vector<std::vector<double>> & a );
void MatrixMultiply( std::vector<std::vector<double>> & a, std::vector<double> & x, std::vector<double> & y );
void gaussElimination( std::vector<std::vector<double>> & a, std::vector<double> & b );

void Print( std::vector<double> & x )
{
    for ( auto v: x )
    {
        std::print( "{} ", v );
    }
    std::println();
}

void Print( std::vector<std::vector<double>> & a )
{
    int N = a.size();
    for ( int i = 0; i < N; ++ i )
    {
        for ( int j = 0; j < N; ++ j )
        {
            std::print( "{:10f} ", a[ i ][ j ] );
        }
        std::println();
    }
    std::println();
}

void MatrixMultiply( std::vector<std::vector<double>> & a, std::vector<double> & x, std::vector<double> & y )
{
    int N = a.size();
    for ( int i = 0; i < N; ++ i )
    {
        y[ i ] = 0.0;
        for ( int j = 0; j < N; ++ j )
        {
            y[ i ] += a[ i ][ j ] * x[ j ];
        }
    }
}

void gaussElimination( std::vector<std::vector<double>> & a, std::vector<double> & b )
{
    int n = a.size();  

    // 消元过程  
    for ( int i = 0; i < n; ++ i ) {
        // 找到当前列的最大值  
        double maxVal = std::abs( a[ i ][ i ] );
        int maxRow = i;  
        for ( int k = i + 1; k < n; ++ k )
        {
            if ( std::abs( a[ k ][ i ] ) > maxVal )
            {
                maxVal = std::abs( a[ k ][ i ] );
                maxRow = k;
            }  
        }  
        std::swap( a[ i ], a[ maxRow ] );
        std::swap( b[ i ], b[ maxRow ] );

        // 进行消元  
        for ( int j = i + 1; j < n; ++ j )
        {
            double factor = a[ j ][ i ] / a[ i ][ i ];
            for ( int k = i; k < n; ++ k )
            {
                a[ j ][ k ] -= factor * a[ i ][ k ];
            }  
            b[ j ] -= factor * b[ i ];
        }  
    }  

    // 回代过程  
    std::vector<double> x( n );
    for ( int i = n - 1; i >= 0; -- i )
    {
        x[ i ] = b[ i ];
        for ( int j = i + 1; j < n; ++ j )
        {
            x[ i ] -= a[ i ][ j ] * x[ j ];
        }  
        x[ i ] /= a[ i ][ i ];
    }  

    // 输出结果  
    for ( int i = 0; i < n; ++ i )
    {  
        std::print( "b{} = {:12.6f}\n", i + 1, b[ i ] );
    }  

    // 输出结果  
    for ( int i = 0; i < n; ++ i )
    {  
        std::print( "x{} = {:12.6f}\n", i + 1, x[ i ] );
    }  
}  

int main() 
{  
    std::vector<std::vector<double>>a{
        {3.0, 2.0,-4.0},
        {2.0, 3.0, 3.0},
        {5.0, -3, 1.0}
    };

    Print( a );

    //std::print( "a.size()={}\n", a.size() );
    std::vector<double> b{ 3.0,15.0,14.0 };
    std::vector<double> xx{ 3.0,1.0,2.0 };
    std::vector<double> y( xx.size() );

    MatrixMultiply( a, xx, y );

    gaussElimination( a, b );

    Print( a );

    Print( y );

    return 0;
}

数值分析 (Numerical Analysis)

Parallel Scientific Computing

Exascale Computing

cyclic reduction or odd-even reduction

C++
1
2
3
Recursive nested dissection for tridiagonal system can be
effectively implemented using cyclic reduction (or
odd-even reduction)
Text Only
1
2
3
4
5
Adding appropriate multiples of (i − 1)st and (i + 1)st
equations to ith equation eliminates xi−1 and xi+1,
respectively, from ith equation
将第 (i − 1) 个方程和第 (i + 1) 个方程的适当倍数添加到第 i 个方程中,
分别从第 i 个方程中消除 xi−1 和 xi+1

For tridiagonal system, ith equation

\[ a_{i}x_{i-1}+b_{i}x_{i}+c_{i}x_{i+1}=y_{i} \]

is transformed into

\[ \bar{a}_{i}x_{i-2}+\bar{b}_{i}x_{i}+\bar{c}_{i}x_{i+2}=\bar{y}_{i} \]

where

\[ \begin{matrix} \bar{a}_{i}=\alpha_{i}{a}_{i-1},&\bar{b}_{i}={b}_{i}+\alpha_{i}{c}_{i-1}+\beta_{i}{a}_{i+1}\\ \bar{c}_{i}=\beta_{i}{c}_{i+1},&\bar{y}_{i}={y}_{i}+\alpha_{i}{y}_{i-1}+\beta_{i}{y}_{i+1}\\ \end{matrix} \]

with

\[ \begin{matrix} \alpha_{i}=-a_{i}/b_{i-1}\\ \beta_{i}=-c_{i}/b_{i+1} \end{matrix} \]

After transforming each equation in system (handling first two and last two equations as special cases), matrix of resulting new system has form

\[ \begin{bmatrix} \bar{b}_{1}& 0 & \bar{c}_{1} & & & & \\ 0&\bar{b}_{2} & 0 & \bar{c}_{2} & & & \\ \bar{a}_{3}& 0 & \bar{b}_{3} & 0 & \bar{c}_{3} & & \\ & \ddots & \ddots &\ddots &\ddots & \ddots & \\ & & \bar{a}_{n-2} & 0 & \bar{b}_{n-2} & 0 & \bar{c}_{n-2}\\ & & & \bar{a}_{n-1} & 0 &\bar{b}_{n-1} & 0\\ & & & &\bar{a}_{n} & 0 &\bar{b}_{n} \end{bmatrix} \]

Reordering equations and unknowns to place odd indices before even indices, matrix then has form

\[ \begin{bmatrix} \bar{b}_{1}& \bar{c}_{1} & & & & & & &\\ \bar{a}_{3}&\bar{b}_{3} & \bar{c}_{3} & & & & && \\ &\ddots & \ddots & \ddots & & & & &\\ & & \bar{a}_{n-3} &\bar{b}_{n-3} &\bar{c}_{n-3} & & & &\\ & & &\bar{a}_{n-1} &\bar{b}_{n-1} & \bar{c}_{n-1} & && &\\ & & & & 0 &\bar{b}_{2} & \bar{c}_{2}& &\\ & & & & & \bar{a}_{4} &\bar{b}_{4}&\bar{c}_{4}&\\ & & & && &\ddots &\ddots &\ddots &\\ & & & && & &\bar{a}_{n-2} &\bar{b}_{n-2} &\bar{c}_{n-2}\\ & & & && & & &\bar{a}_{n} &\bar{b}_{n}\\ \end{bmatrix} \]
\[ \begin{bmatrix} \bar{y}_{1}\\ \bar{y}_{3}\\ \vdots \\ \bar{y}_{n-3}\\ \bar{y}_{n-1}\\ \bar{y}_{2}\\ \bar{y}_{4}\\ \vdots \\ \bar{y}_{n-2}\\ \bar{y}_{n}\\ \end{bmatrix} \]
  • System breaks into two independent tridiagonal systems that can be solved simultaneously (i.e., divide-and-conquer)
  • Each resulting tridiagonal system can in turn be solved using same technique (i.e., recursively)
  • Thus, there are two distinct sources of potential parallelism
    • simultaneous transformation of equations in system
    • simultaneous solution of multiple tridiagonal subsystems
  • Cyclic reduction requires log n steps, each of which requires Θ(n) operations, so total work is Θ(n log n)
  • Serially, cyclic reduction is therefore inferior to LU or Cholesky factorization, which require only Θ(n) work for tridiagonal system
  • But in parallel, cyclic reduction can exploit up to n-fold parallelism and requires only Θ(log n) time in best case

  • i = 1

\[ \begin{matrix} \alpha_1&=&-a_{1}/b_{0}=0\\ \beta_1&=&-c_{1}/b_{2}\\ \bar{a}_1&=&\alpha_{1}a_{0}=0\\ \bar{c}_1&=&\beta_{1}c_{2}\\ \bar{b}_{1}&=&{b}_{1}+(\alpha_{1}c_{0}=0)+\beta_{1}a_{2} \\ \bar{y}_{1}&=&{y}_{1}+(\alpha_{1}y_{0}=0)+\beta_{1}y_{2} \\ \end{matrix} \]
  • i = 2
\[ \begin{matrix} \alpha_{2}&=&-a_{2}/b_{1}\\ \beta_{2}&=&-c_{2}/b_{3}\\ \bar{a}_{2}&=&\alpha_{2}a_{1}\\ \bar{c}_{2}&=&\beta_{2}c_{3}\\ \bar{b}_{2}&=&{b}_{2}+\alpha_{2}c_{1}+\beta_{2}a_{3} \\ \bar{y}_{2}&=&{y}_{2}+\alpha_{2}y_{1}+\beta_{2}y_{3} \\ \end{matrix} \]
  • i = n-1
\[ \begin{matrix} \alpha_{n-1}&=&-a_{n-1}/b_{n-2}\\ \beta_{n-1}&=&-c_{n-1}/b_{n}\\ \bar{a}_{n-1}&=&\alpha_{n-1}a_{n-2}\\ \bar{c}_{n-1}&=&\beta_{n-1}c_{n}\\ \bar{b}_{n-1}&=&{b}_{n-1}+\alpha_{n-1}c_{n-2}+\beta_{n-1}a_{n} \\ \bar{y}_{n-1}&=&{y}_{n-1}+\alpha_{n-1}y_{n-2}+\beta_{n-1}y_{n} \\ \end{matrix} \]
  • i = n
\[ \begin{matrix} \alpha_{n}&=&-a_{n}/b_{n-1}\\ \beta_{n}&=&-c_{n}/b_{n+1}\\ \bar{a}_{n}&=&\alpha_{n}a_{n-1}\\ \bar{c}_{n}&=&\beta_{n}c_{n+1}=0\\ \bar{b}_{n}&=&{b}_{n}+\alpha_{n}c_{n-1}+(\beta_{n}a_{n+1}=0) \\ \bar{y}_{n}&=&{y}_{n}+\alpha_{n}y_{n-1}+(\beta_{n}y_{n+1}=0) \\ \end{matrix} \]

Example

\[ \begin{bmatrix} 2&-1&0\\ -1&2&-1\\ 0&-1&2\\ \end{bmatrix} \begin{bmatrix} x_{1}\\x_{2}\\x_{3}\\ \end{bmatrix} = \begin{bmatrix} 1\\0\\1\\ \end{bmatrix} \]

Parallel Gauss

code

C++
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import std;

void Print( std::vector<double> & x, const std::string &name="vector")
{
    std::print( "{} = ", name );
    for ( auto v: x )
    {
        std::print( "{} ", v );
    }
    std::println();
}


void thomas_algorithm( const std::vector<double> & a,
    const std::vector<double> & b,
    const std::vector<double> & c,
    const std::vector<double> & d,
    std::vector<double> & x )
{
    size_t N = d.size();

    std::vector<double> c_star( N, 0.0 );
    std::vector<double> d_star( N, 0.0 );

    c_star[ 0 ] = c[ 0 ] / b[ 0 ];
    d_star[ 0 ] = d[ 0 ] / b[ 0 ];

    for ( int i = 1; i < N; ++ i )
    {
        double coef = 1.0 / ( b[ i ] - a[ i ] * c_star[ i - 1 ] );
        c_star[ i ] = c[ i ] * coef;
        d_star[ i ] = ( d[ i ] - a[ i ] * d_star[ i - 1 ] ) * coef;
    }

    x[ N - 1 ] = d_star[ N - 1 ];

    for ( int i = N - 2; i >= 0; -- i )
    {
        x[ i ] = d_star[ i ] - c_star[ i ] * x[ i + 1 ];
    }
}

void split(
    std::vector<double> & a,
    std::vector<double> & b,
    std::vector<double> & c,
    std::vector<double> & y,
    std::vector<double> & a_bar,
    std::vector<double> & b_bar,
    std::vector<double> & c_bar,
    std::vector<double> & y_bar )
{
    int N = a.size();
    a_bar.resize( N );
    b_bar.resize( N );
    c_bar.resize( N );
    y_bar.resize( N );
    for ( int i = 0; i < N; ++ i )
    {
        double bim1 = 0;
        double bip1 = 0;
        double aim1 = 0;
        double aip1 = 0;
        double cim1 = 0;
        double cip1 = 0;
        double yim1 = 0;
        double yip1 = 0;
        double alpha = 0;
        double beta = 0;
        if ( i != 0 )
        {
            aim1 =  a[ i - 1 ];
            bim1 =  b[ i - 1 ];
            cim1 =  c[ i - 1 ];
            yim1 =  y[ i - 1 ];
            alpha = - a[ i ] / bim1;
        }

        if ( i != N - 1 )
        {
            aip1 =  a[ i + 1 ];
            bip1 =  b[ i + 1 ];
            cip1 =  c[ i + 1 ];
            yip1 =  y[ i + 1 ];
            beta = - c[ i ] / bip1;
        }
        a_bar[ i ] = alpha * aim1;
        c_bar[ i ] = beta * cip1;
        b_bar[ i ] = b[ i ] + alpha * cim1 + beta * aip1;
        y_bar[ i ] = y[ i ] + alpha * yim1 + beta * yip1;
    }
}

void SetCyclicReductionValue
(
    std::vector<double> & a,
    std::vector<double> & b,
    std::vector<double> & c,
    std::vector<double> & y,
    std::vector<double> & a1,
    std::vector<double> & b1,
    std::vector<double> & c1,
    std::vector<double> & y1,
    std::vector<double> & a2,
    std::vector<double> & b2,
    std::vector<double> & c2,
    std::vector<double> & y2
)
{
    int N = a.size();
    int halfN = N / 2;
    a1.resize( halfN );
    b1.resize( halfN );
    c1.resize( halfN );
    y1.resize( halfN );
    a2.resize( halfN );
    b2.resize( halfN );
    c2.resize( halfN );
    y2.resize( halfN );
    for ( int i = 0; i < halfN; ++ i )
    {
        int ieven = 2 * i;
        int iodd  = ieven + 1;
        a1[ i ] = a[ ieven ];
        b1[ i ] = b[ ieven ];
        c1[ i ] = c[ ieven ];
        y1[ i ] = y[ ieven ];

        a2[ i ] = a[ iodd ];
        b2[ i ] = b[ iodd ];
        c2[ i ] = c[ iodd ];
        y2[ i ] = y[ iodd ];
    }
}

int main( int argc, char ** argv )
{
    const int N = 8;

    std::vector<double> a( N, -1 );
    std::vector<double> b( N, 2 );
    std::vector<double> c( N, -1 );
    std::vector<double> y( N, 0.0 );
    a[ 0 ] = 0;
    c[ N - 1 ] = 0;
    y[ 0 ] = 1;
    y[ N - 1 ] = 1;

    std::vector<double> x( y.size() );

    std::vector<double> as, bs, cs, ys;
    split( a, b, c, y, as, bs, cs, ys );

    std::vector<double> a1, b1, c1, y1;
    std::vector<double> a2, b2, c2, y2;

    SetCyclicReductionValue( as, bs, cs, ys, a1, b1, c1, y1, a2, b2, c2, y2 );

    std::vector<double> x1( y1.size() );
    std::vector<double> x2( y2.size() );
    std::vector<double> xx;

    thomas_algorithm( a, b, c, y, x );
    thomas_algorithm( a1, b1, c1, y1, x1 );
    thomas_algorithm( a2, b2, c2, y2, x2 );
    Print( x, "x" );
    Print( x1, "x1" );
    Print( x2, "x2" );

    for ( int i = 0; i < x1.size(); ++ i )
    {
        xx.push_back( x1[ i ] );
        xx.push_back( x2[ i ] );
    }

    Print( xx, "xx" );

    return 0;
}

matrix 4x4

\[ \begin{bmatrix} b_{1}&c_{1}\\ a_{2}&b_{2}&c_{2}\\ &a_{3}&b_{3}&c_{3}\\ &&a_{4}&b_{4}\\ \end{bmatrix} \begin{bmatrix} x_{1}\\x_{2}\\x_{3}\\x_{4}\\ \end{bmatrix}= \begin{bmatrix} y_{1}\\y_{2}\\y_{3}\\y_{4}\\ \end{bmatrix} \]
\[ \bar{a}_{i}x_{i-2}+\bar{b}_{i}x_{i}+\bar{c}_{i}x_{i+2}=\bar{y}_{i} \]
\[ \begin{matrix} \bar{a}_{1}x_{-1}+\bar{b}_{1}x_{1}+\bar{c}_{1}x_{3}=\bar{y}_{1}\\ \bar{a}_{2}x_{0}+\bar{b}_{2}x_{2}+\bar{c}_{2}x_{4}=\bar{y}_{2}\\ \bar{a}_{3}x_{1}+\bar{b}_{3}x_{3}+\bar{c}_{3}x_{5}=\bar{y}_{3}\\ \bar{a}_{4}x_{2}+\bar{b}_{4}x_{4}+\bar{c}_{4}x_{6}=\bar{y}_{4}\\ \end{matrix} \]
\[ \begin{matrix} \bar{b}_{1}x_{1}+\bar{c}_{1}x_{3}=\bar{y}_{1}\\ \bar{b}_{2}x_{2}+\bar{c}_{2}x_{4}=\bar{y}_{2}\\ \bar{a}_{3}x_{1}+\bar{b}_{3}x_{3}=\bar{y}_{3}\\ \bar{a}_{4}x_{2}+\bar{b}_{4}x_{4}=\bar{y}_{4}\\ \end{matrix} \]
\[ \begin{matrix} \bar{b}_{1}x_{1}+\bar{c}_{1}x_{3}=\bar{y}_{1}\\ \bar{a}_{3}x_{1}+\bar{b}_{3}x_{3}=\bar{y}_{3}\\ \bar{b}_{2}x_{2}+\bar{c}_{2}x_{4}=\bar{y}_{2}\\ \bar{a}_{4}x_{2}+\bar{b}_{4}x_{4}=\bar{y}_{4}\\ \end{matrix} \]
\[ \begin{bmatrix} \bar{b}_{1}&\bar{c}_{1}&0&0\\ \bar{a}_{3}&\bar{b}_{3}&0&0\\ 0&0&\bar{b}_{2}&\bar{c}_{2}\\ 0&0& \bar{a}_{4}&\bar{b}_{4}\\ \end{bmatrix} \begin{bmatrix} x_{1}\\x_{3}\\x_{2}\\x_{4}\\ \end{bmatrix}= \begin{bmatrix} \bar{y}_{1}\\\bar{y}_{3}\\\bar{y}_{2}\\\bar{y}_{4}\\ \end{bmatrix} \]
  • matrix 2x2
\[\begin{bmatrix} b_{1}&c_{1}\\ a_{2}&b_{2}\\ \end{bmatrix} \begin{bmatrix} x_{1}\\x_{2} \end{bmatrix}= \begin{bmatrix} {y}_{1}\\ {y}_{2} \end{bmatrix}\]
\[ \bar{a}_{i}x_{i-2}+\bar{b}_{i}x_{i}+\bar{c}_{i}x_{i+2}=\bar{y}_{i} \]
\[ \begin{bmatrix} \bar{a}_{1}x_{-1}+\bar{b}_{1}x_{1}+\bar{c}_{1}x_{3}=\bar{y}_{1}\\ \bar{a}_{2}x_{0}+\bar{b}_{2}x_{2}+\bar{c}_{2}x_{4}=\bar{y}_{2}\\ \end{bmatrix} \]
\[ \begin{bmatrix} \bar{b}_{1}x_{1}=\bar{y}_{1}\\ \bar{b}_{2}x_{2}=\bar{y}_{2}\\ \end{bmatrix} \]
\[ \begin{bmatrix} 2&-1\\ -1&2\\ \end{bmatrix} \begin{bmatrix} x_{1}\\x_{2} \end{bmatrix}= \begin{bmatrix} 1\\ 1 \end{bmatrix} \]
\[ \begin{matrix} b_{1}x_{1}+c_{1}x_{2}={y}_{1}\\ a_{2}x_{1}+b_{2}x_{2}={y}_{2}\\ \end{matrix} \]
\[ \begin{matrix} a_{1}=0,b_{1}=2,c_{1}=-1\\ a_{2}=-1,b_{2}=2,c_{2}=0\\ \end{matrix} \]
\[ \begin{matrix} \alpha_{i}=-a_{i}/b_{i-1}=0\\ \alpha_{1}=-a_{1}/b_{0}=0\\ \alpha_{2}=-a_{2}/b_{1}=1/2\\ \beta_{i}=-c_{i}/b_{i+1}\\ \beta_{1}=-c_{1}/b_{2}=1/2\\ \beta_{2}=-c_{2}/b_{3}=0\\ \end{matrix} \]
\[ \begin{matrix} \bar{a}_{i}=\alpha_{i}a_{i-1}\\ \bar{a}_{1}=\alpha_{1}a_{0}=0\\ \bar{a}_{2}=\alpha_{2}a_{1}=1/2\cdot 0=0\\ \bar{c}_{i}=\beta_{i}c_{i+1}\\ \bar{c}_{1}=\beta_{1}c_{2}=1/2\cdot 0=0\\ \bar{c}_{2}=\beta_{2}c_{3}=0\\ \end{matrix} \]
\[ \begin{matrix} \bar{b}_{i}={b}_{i}+\alpha_{i}c_{i-1}+\beta_{i}a_{i+1}\\ \bar{b}_{1}={b}_{1}+\alpha_{1}c_{0}+\beta_{1}a_{2}=2+0+1/2\cdot(-1)=3/2 \\ \bar{b}_{2}={b}_{2}+\alpha_{2}c_{1}+\beta_{2}a_{3}=2+1/2\cdot(-1)+0=3/2\\ \bar{y}_{i}={y}_{i}+\alpha_{i}y_{i-1}+\beta_{i}y_{i+1}\\ \bar{y}_{1}={y}_{1}+\alpha_{1}y_{0}+\beta_{1}y_{2}=1+0+1/2\cdot(1)=3/2\\ \bar{y}_{2}={y}_{2}+\alpha_{2}y_{1}+\beta_{2}y_{3}=1+1/2\cdot(1)+0=3/2\\ \end{matrix} \]
C++
1
2
o   o    o   ...    o   o
0   1    2   ...    N   N+1

thomas_algorithm index 1N(0N+1)

C++
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import std;

void Print( std::vector<double> & x, const std::string &name="vector")
{
    std::print( "{} = ", name );
    for ( auto v: x )
    {
        std::print( "{} ", v );
    }
    std::println();
}

void thomas_algorithm( const std::vector<double> & a,
    const std::vector<double> & b,
    const std::vector<double> & c,
    const std::vector<double> & d,
    std::vector<double> & x )
{
    size_t N = d.size();

    std::vector<double> c_star( N, 0.0 );
    std::vector<double> d_star( N, 0.0 );

    c_star[ 0 ] = c[ 0 ] / b[ 0 ];
    d_star[ 0 ] = d[ 0 ] / b[ 0 ];

    for ( int i = 1; i < N; ++ i )
    {
        double coef = 1.0 / ( b[ i ] - a[ i ] * c_star[ i - 1 ] );
        c_star[ i ] = c[ i ] * coef;
        d_star[ i ] = ( d[ i ] - a[ i ] * d_star[ i - 1 ] ) * coef;
    }

    x[ N - 1 ] = d_star[ N - 1 ];

    for ( int i = N - 2; i >= 0; -- i )
    {
        x[ i ] = d_star[ i ] - c_star[ i ] * x[ i + 1 ];
    }
}

int main( int argc, char ** argv )
{
    const int N = 4;

    for ( int N = 4; N >= 1; --N )
    {
        int totalN = N + 2;
        std::vector<double> a( totalN, -1 );
        std::vector<double> b( totalN, 2 );
        std::vector<double> c( totalN, -1 );
        std::vector<double> y( totalN, 0.0 );
        a[ 0 ] = 0;
        a[ 1 ] = 0;
        b[ 0 ] = 1;
        b[ N + 1 ] = 1;
        c[ N ] = 0;
        c[ N + 1 ] = 0;
        y[ 0 ] = 0;
        y[ 1 ] = 1;
        y[ N ] = 1;
        y[ N + 1 ] = 0;

        std::vector<double> anew( a.begin() + 1, a.end() - 1 );
        std::vector<double> bnew( b.begin() + 1, b.end() - 1 );
        std::vector<double> cnew( c.begin() + 1, c.end() - 1 );
        std::vector<double> ynew( y.begin() + 1, y.end() - 1 );
        std::vector<double> x( ynew.size() );

        thomas_algorithm( anew, bnew, cnew, ynew, x );
        std::print( "N={}\n", N );
        Print( x, "x" );
    }

    return 0;
}

output

Text Only
1

CyclicReduction

C++
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import std;

void Print( std::vector<double> & x, const std::string &name="vector")
{
    std::print( "{} = ", name );
    for ( auto v: x )
    {
        std::print( "{} ", v );
    }
    std::println();
}

void thomas_algorithm( const std::vector<double> & a,
    const std::vector<double> & b,
    const std::vector<double> & c,
    const std::vector<double> & d,
    std::vector<double> & x )
{
    size_t N = d.size();

    std::vector<double> c_star( N, 0.0 );
    std::vector<double> d_star( N, 0.0 );

    c_star[ 0 ] = c[ 0 ] / b[ 0 ];
    d_star[ 0 ] = d[ 0 ] / b[ 0 ];

    for ( int i = 1; i < N; ++ i )
    {
        double coef = 1.0 / ( b[ i ] - a[ i ] * c_star[ i - 1 ] );
        c_star[ i ] = c[ i ] * coef;
        d_star[ i ] = ( d[ i ] - a[ i ] * d_star[ i - 1 ] ) * coef;
    }

    x[ N - 1 ] = d_star[ N - 1 ];

    for ( int i = N - 2; i >= 0; -- i )
    {
        x[ i ] = d_star[ i ] - c_star[ i ] * x[ i + 1 ];
    }
}

void Boundary( std::vector<double> & a,
    std::vector<double> & b,
    std::vector<double> & c,
    std::vector<double> & y )
{
    int totalN = a.size();
    int N = totalN - 2;
    a[ 0 ] = 0;
    a[ 1 ] = 0;
    b[ 0 ] = 1;
    b[ N + 1 ] = 1;
    c[ N ] = 0;
    c[ N + 1 ] = 0;
    y[ 0 ] = 0;
    y[ N + 1 ] = 0;
}

void SetCyclicReductionValue
(
    std::vector<double> & a,
    std::vector<double> & b,
    std::vector<double> & c,
    std::vector<double> & y,
    std::vector<double> & a1,
    std::vector<double> & b1,
    std::vector<double> & c1,
    std::vector<double> & y1,
    std::vector<double> & a2,
    std::vector<double> & b2,
    std::vector<double> & c2,
    std::vector<double> & y2
)
{
    int N = a.size();
    int halfN = N / 2;
    a1.resize( halfN );
    b1.resize( halfN );
    c1.resize( halfN );
    y1.resize( halfN );
    a2.resize( halfN );
    b2.resize( halfN );
    c2.resize( halfN );
    y2.resize( halfN );
    for ( int i = 0; i < halfN; ++ i )
    {
        int ieven = 2 * i;
        int iodd  = ieven + 1;
        a1[ i ] = a[ ieven ];
        b1[ i ] = b[ ieven ];
        c1[ i ] = c[ ieven ];
        y1[ i ] = y[ ieven ];

        a2[ i ] = a[ iodd ];
        b2[ i ] = b[ iodd ];
        c2[ i ] = c[ iodd ];
        y2[ i ] = y[ iodd ];
    }
}

void CyclicReduction( std::vector<double> & a,
    std::vector<double> & b,
    std::vector<double> & c,
    std::vector<double> & y,
    std::vector<double> & abar,
    std::vector<double> & bbar,
    std::vector<double> & cbar,
    std::vector<double> & ybar
    )
{
    int totalN = a.size();
    int N = totalN - 2;
    for ( int i = 1; i <= N; ++ i )
    {
        int in = std::max( 0, i - 1 );
        int ip = std::min( N + 1, i + 1 );

        double alpha = - a[ i ] / b[ in ];
        double beta = - c[ i ] / b[ ip ];

        abar[ i ] = alpha * a[ in ];
        cbar[ i ] = beta * c[ ip ];
        bbar[ i ] = b[ i ] + alpha * c[ in ] + beta * a[ ip ];
        ybar[ i ] = y[ i ] + alpha * y[ in ] + beta * y[ ip ];
    }
}

void CR
(
    std::vector<double> & a,
    std::vector<double> & b,
    std::vector<double> & c,
    std::vector<double> & y,
    std::vector<double> & a1,
    std::vector<double> & b1,
    std::vector<double> & c1,
    std::vector<double> & y1,
    std::vector<double> & a2,
    std::vector<double> & b2,
    std::vector<double> & c2,
    std::vector<double> & y2
)
{
    int totalN = a.size();
    int N = totalN - 2;
    int halfN = N / 2;
    int totalHalfN = halfN + 2;
    a1.resize( totalHalfN );
    b1.resize( totalHalfN );
    c1.resize( totalHalfN );
    y1.resize( totalHalfN );

    a2.resize( totalHalfN );
    b2.resize( totalHalfN );
    c2.resize( totalHalfN );
    y2.resize( totalHalfN );
    for ( int i = 1; i <= halfN; ++ i )
    {
        int iodd = 2 * i - 1;
        int ieven = iodd + 1;

        a1[ i ] = a[ iodd ];
        b1[ i ] = b[ iodd ];
        c1[ i ] = c[ iodd ];
        y1[ i ] = y[ iodd ];

        a2[ i ] = a[ ieven ];
        b2[ i ] = b[ ieven ];
        c2[ i ] = c[ ieven ];
        y2[ i ] = y[ ieven ];
    }
}

void Create( std::vector<double> & a, std::vector<double> & aNew )
{
    aNew.assign( a.begin() + 1, a.end() - 1 );
}

int main( int argc, char ** argv )
{
    const int N = 8;

    int totalN = N + 2;
    std::vector<double> a( totalN, -1 );
    std::vector<double> b( totalN, 2 );
    std::vector<double> c( totalN, -1 );
    std::vector<double> y( totalN, 1.0 );

    std::vector<double> anew;
    std::vector<double> bnew;
    std::vector<double> cnew;
    std::vector<double> ynew;
    std::vector<double> x;

    Create( a, anew );
    Create( b, bnew );
    Create( c, cnew );
    Create( y, ynew );
    x.resize( ynew.size() );

    thomas_algorithm( anew, bnew, cnew, ynew, x );
    Print( x, "x" );

    Boundary( a, b, c, y );

    std::vector<double> acr( a.size() );
    std::vector<double> bcr( b.size() );
    std::vector<double> ccr( c.size() );
    std::vector<double> ycr( y.size() );

    CyclicReduction( a, b, c, y, acr, bcr, ccr, ycr );

    std::vector<double> a1, b1, c1, y1;
    std::vector<double> a2, b2, c2, y2;

    CR( acr, bcr, ccr, ycr, a1, b1, c1, y1, a2, b2, c2, y2 );

    std::vector<double> a1new,b1new,c1new,y1new;
    std::vector<double> a2new,b2new,c2new,y2new;
    Create( a1, a1new );
    Create( b1, b1new );
    Create( c1, c1new );
    Create( y1, y1new );

    Create( a2, a2new );
    Create( b2, b2new );
    Create( c2, c2new );
    Create( y2, y2new );
    std::vector<double> x1( y1new.size() );
    std::vector<double> x2( y2new.size() );
    std::vector<double> xx;

    thomas_algorithm( a1new, b1new, c1new, y1new, x1 );
    thomas_algorithm( a2new, b2new, c2new, y2new, x2 );
    Print( x1, "x1" );
    Print( x2, "x2" );

    for ( int i = 0; i < x1.size(); ++ i )
    {
        xx.push_back( x1[ i ] );
        xx.push_back( x2[ i ] );
    }
    Print( xx, "xx" );

    return 0;
}

C++
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import std;

void Print( std::vector<double> & x, const std::string &name="vector")
{
    std::print( "{} = ", name );
    for ( auto v: x )
    {
        std::print( "{} ", v );
    }
    std::println();
}

void thomas_algorithm( const std::vector<double> & a,
    const std::vector<double> & b,
    const std::vector<double> & c,
    const std::vector<double> & d,
    std::vector<double> & x )
{
    size_t N = d.size();

    std::vector<double> c_star( N, 0.0 );
    std::vector<double> d_star( N, 0.0 );

    c_star[ 0 ] = c[ 0 ] / b[ 0 ];
    d_star[ 0 ] = d[ 0 ] / b[ 0 ];

    for ( int i = 1; i < N; ++ i )
    {
        double coef = 1.0 / ( b[ i ] - a[ i ] * c_star[ i - 1 ] );
        c_star[ i ] = c[ i ] * coef;
        d_star[ i ] = ( d[ i ] - a[ i ] * d_star[ i - 1 ] ) * coef;
    }

    x[ N - 1 ] = d_star[ N - 1 ];

    for ( int i = N - 2; i >= 0; -- i )
    {
        x[ i ] = d_star[ i ] - c_star[ i ] * x[ i + 1 ];
    }
}

void Boundary( std::vector<double> & a,
    std::vector<double> & b,
    std::vector<double> & c,
    std::vector<double> & y )
{
    int totalN = a.size();
    int N = totalN - 2;
    a[ 0 ] = 0;
    a[ 1 ] = 0;
    b[ 0 ] = 1;
    b[ N + 1 ] = 1;
    c[ N ] = 0;
    c[ N + 1 ] = 0;
    y[ 0 ] = 0;
    y[ N + 1 ] = 0;
}

void SetCyclicReductionValue
(
    std::vector<double> & a,
    std::vector<double> & b,
    std::vector<double> & c,
    std::vector<double> & y,
    std::vector<double> & a1,
    std::vector<double> & b1,
    std::vector<double> & c1,
    std::vector<double> & y1,
    std::vector<double> & a2,
    std::vector<double> & b2,
    std::vector<double> & c2,
    std::vector<double> & y2
)
{
    int N = a.size();
    int halfN = N / 2;
    a1.resize( halfN );
    b1.resize( halfN );
    c1.resize( halfN );
    y1.resize( halfN );
    a2.resize( halfN );
    b2.resize( halfN );
    c2.resize( halfN );
    y2.resize( halfN );
    for ( int i = 0; i < halfN; ++ i )
    {
        int ieven = 2 * i;
        int iodd  = ieven + 1;
        a1[ i ] = a[ ieven ];
        b1[ i ] = b[ ieven ];
        c1[ i ] = c[ ieven ];
        y1[ i ] = y[ ieven ];

        a2[ i ] = a[ iodd ];
        b2[ i ] = b[ iodd ];
        c2[ i ] = c[ iodd ];
        y2[ i ] = y[ iodd ];
    }
}

void CyclicReduction( std::vector<double> & a,
    std::vector<double> & b,
    std::vector<double> & c,
    std::vector<double> & y,
    std::vector<double> & abar,
    std::vector<double> & bbar,
    std::vector<double> & cbar,
    std::vector<double> & ybar
    )
{
    int totalN = a.size();
    int N = totalN - 2;
    for ( int i = 1; i <= N; ++ i )
    {
        int in = std::max( 0, i - 1 );
        int ip = std::min( N + 1, i + 1 );

        double alpha = - a[ i ] / b[ in ];
        double beta = - c[ i ] / b[ ip ];

        abar[ i ] = alpha * a[ in ];
        cbar[ i ] = beta * c[ ip ];
        bbar[ i ] = b[ i ] + alpha * c[ in ] + beta * a[ ip ];
        ybar[ i ] = y[ i ] + alpha * y[ in ] + beta * y[ ip ];
    }
}

void CR
(
    std::vector<double> & a,
    std::vector<double> & b,
    std::vector<double> & c,
    std::vector<double> & y,
    std::vector<double> & a1,
    std::vector<double> & b1,
    std::vector<double> & c1,
    std::vector<double> & y1,
    std::vector<double> & a2,
    std::vector<double> & b2,
    std::vector<double> & c2,
    std::vector<double> & y2
)
{
    int totalN = a.size();
    int N = totalN - 2;
    int halfN = N / 2;
    int totalHalfN = halfN + 2;
    a1.resize( totalHalfN );
    b1.resize( totalHalfN );
    c1.resize( totalHalfN );
    y1.resize( totalHalfN );

    a2.resize( totalHalfN );
    b2.resize( totalHalfN );
    c2.resize( totalHalfN );
    y2.resize( totalHalfN );
    for ( int i = 1; i <= halfN; ++ i )
    {
        int iodd = 2 * i - 1;
        int ieven = iodd + 1;

        a1[ i ] = a[ iodd ];
        b1[ i ] = b[ iodd ];
        c1[ i ] = c[ iodd ];
        y1[ i ] = y[ iodd ];

        a2[ i ] = a[ ieven ];
        b2[ i ] = b[ ieven ];
        c2[ i ] = c[ ieven ];
        y2[ i ] = y[ ieven ];
    }
}

void Create( std::vector<double> & a, std::vector<double> & aNew )
{
    aNew.assign( a.begin() + 1, a.end() - 1 );
}

void crtridiag( std::vector<double> & a,
    std::vector<double> & b,
    std::vector<double> & c,
    std::vector<double> & y,
    std::vector<double> & x
    )
{
    int totalN = a.size();
    int N = totalN - 2;
    x.resize( N );
    if ( N == 1 )
    {
        x[ 0 ] = y[ 1 ] / b[ 1 ];
        return;
    }

    Boundary( a, b, c, y );

    std::vector<double> acr( a.size() );
    std::vector<double> bcr( b.size() );
    std::vector<double> ccr( c.size() );
    std::vector<double> ycr( y.size() );

    CyclicReduction( a, b, c, y, acr, bcr, ccr, ycr );

    std::vector<double> a1, b1, c1, y1;
    std::vector<double> a2, b2, c2, y2;

    CR( acr, bcr, ccr, ycr, a1, b1, c1, y1, a2, b2, c2, y2 );

    std::vector<double> x1;
    crtridiag( a1, b1, c1, y1, x1 );

    Print( x1, std::format( "x1(N={})", N ) );
    std::vector<double> x2;
    crtridiag( a2, b2, c2, y2, x2 );
    Print( x2, std::format( "x2(N={})", N ) );

    std::vector<double> xx;
    for ( int i = 0; i < x1.size(); ++ i )
    {
        xx.push_back( x1[ i ] );
        xx.push_back( x2[ i ] );
    }
    Print( xx, std::format( "x1+2(N={})", N ) );
    x = xx;
}

int main( int argc, char ** argv )
{
    const int N = 8;

    int totalN = N + 2;
    std::vector<double> a( totalN, -1 );
    std::vector<double> b( totalN, 2 );
    std::vector<double> c( totalN, -1 );
    std::vector<double> y( totalN, 1.0 );
    std::vector<double> x;

    crtridiag( a, b, c, y, x );

    Print( x, "xFinal" );

    return 0;
}

output

PowerShell
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
x1(N=2) = 4
x2(N=2) = 10
x1+2(N=2) = 4 10
x1(N=4) = 4 10
x1(N=2) = 9
x2(N=2) = 6.999999999999999
x1+2(N=2) = 9 6.999999999999999
x2(N=4) = 9 6.999999999999999
x1+2(N=4) = 4 9 10 6.999999999999999
x1(N=8) = 4 9 10 6.999999999999999
x1(N=2) = 6.999999999999999
x2(N=2) = 9
x1+2(N=2) = 6.999999999999999 9
x1(N=4) = 6.999999999999999 9
x1(N=2) = 10
x2(N=2) = 4
x1+2(N=2) = 10 4
x2(N=4) = 10 4
x1+2(N=4) = 6.999999999999999 10 9 4
x2(N=8) = 6.999999999999999 10 9 4
x1+2(N=8) = 4 6.999999999999999 9 10 10 9 6.999999999999999 4
xFinal = 4 6.999999999999999 9 10 10 9 6.999999999999999 4

\[ \begin{matrix} \alpha_{i}=-a_{i}/b_{i-1}\\ \beta_{i}=-c_{i}/b_{i+1}\\ \bar{a}_{i}=\alpha_{i}{a}_{i-1}\\ \bar{c}_{i}=\beta_{i}{c}_{i+1}\\ \bar{b}_{i}={b}_{i}+\alpha_{i}{c}_{i-1}+\beta_{i}{a}_{i+1}\\ \bar{y}_{i}={y}_{i}+\alpha_{i}{y}_{i-1}+\beta_{i}{y}_{i+1}\\ \bar{a}_{i}=\alpha_{i}{a}_{i-1}=-a_{i}/b_{i-1}({a}_{i-1})=-a_{i}{a}_{i-1}/b_{i-1}\\ \bar{c}_{i}=\beta_{i}{c}_{i+1}=-c_{i}/b_{i+1}({c}_{i+1})=-c_{i}{c}_{i+1}/b_{i+1}\\ \bar{b}_{i}={b}_{i}-a_{i}{c}_{i-1}/b_{i-1}-{a}_{i+1}c_{i}/b_{i+1}\\ \end{matrix} \]