跳转至

VS2022

Visual Studio 2022

$(PlatformShortName)

The short name of current architecture, for example, "x86" or "x64".

Update

Text Only
1
2
Help
Check for Updates

Nuget

Windows SDK Location

Text Only
1
2
c:\Program Files (x86)\Windows Kits\10\
c:\Program Files (x86)\Windows Kits\10\Include\10.0.22621.0\
Text Only
1
2
3
C:\Program Files (x86)\Microsoft Visual Studio\Installer\setup.exe
Tools>Get 
Get

vcvarsall.bat

Text Only
1
2
3
4
5
6
C:\Users\eric>"C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\Build\vcvarsall.bat" x64
**********************************************************************
** Visual Studio 2022 Developer Command Prompt v17.13.6
** Copyright (c) 2022 Microsoft Corporation
**********************************************************************
[vcvarsall.bat] Environment initialized for: 'x64'
Text Only
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
cmd.exe "/K" '"C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\Build\vcvarsall.bat" x64 && powershell'
PS C:\Users\eric> cmd.exe "/K" '"C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Auxiliary\Build\vcvarsall.bat" x64 && powershell'
**********************************************************************
** Visual Studio 2022 Developer Command Prompt v17.13.6
** Copyright (c) 2022 Microsoft Corporation
**********************************************************************
[vcvarsall.bat] Environment initialized for: 'x64'
Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

PS C:\Users\eric>

cl

Text Only
1
2
3
4
5
PS C:\Users\eric> cl
Microsoft (R) C/C++ Optimizing Compiler Version 19.43.34810 for x64
Copyright (C) Microsoft Corporation.  All rights reserved.

usage: cl [ option... ] filename... [ /link linkoption... ]

Text Only
1
cl /std:c++23 /EHsc main.cpp /Fe:main.exe

/bigobj(增加 .Obj 文件中的节数)

Text Only
1
2
d:\work\google_work\googletest\googlemock\test\gmock-actions_test.cc
https://github.com/google/googletest/tree/main/googlemock/test/gmock-actions_test.cc

CmakeLists.txt

CMake
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
cmake_minimum_required ( VERSION 3.28 )

project ( testprj )

include(FetchContent)

FetchContent_Declare(
  googletest
  GIT_REPOSITORY https://github.com/google/googletest.git
  GIT_TAG        release-1.12.0
)
FetchContent_MakeAvailable(googletest)

enable_testing()

add_executable( testprj
  gmock-actions_test.cc
)

target_link_libraries( testprj
  PRIVATE
    GTest::gtest_main
    GTest::gmock
)

#if ( MSVC )
#  target_compile_options( testprj 
#    PRIVATE
#      /bigobj
#  )
#endif()

include(GoogleTest)
gtest_discover_tests(testprj)

gmock-actions_test.cc

Text Only
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Google Mock - a framework for writing C++ mock classes.
//
// This file tests the built-in actions.

// Silence C4100 (unreferenced formal parameter) and C4503 (decorated name
// length exceeded) for MSVC.
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4100)
#pragma warning(disable : 4503)
#if _MSC_VER == 1900
// and silence C4800 (C4800: 'int *const ': forcing value
// to bool 'true' or 'false') for MSVC 15
#pragma warning(disable : 4800)
#endif
#endif

#include "gmock/gmock-actions.h"

#include <algorithm>
#include <functional>
#include <iterator>
#include <memory>
#include <string>
#include <type_traits>
#include <vector>

#include "gmock/gmock.h"
#include "gmock/internal/gmock-port.h"
#include "gtest/gtest-spi.h"
#include "gtest/gtest.h"

namespace testing {
namespace {

using ::testing::internal::BuiltInDefaultValue;

TEST(TypeTraits, Negation) {
  // Direct use with std types.
  static_assert(std::is_base_of<std::false_type,
                                internal::negation<std::true_type>>::value,
                "");

  static_assert(std::is_base_of<std::true_type,
                                internal::negation<std::false_type>>::value,
                "");

  // With other types that fit the requirement of a value member that is
  // convertible to bool.
  static_assert(std::is_base_of<
                    std::true_type,
                    internal::negation<std::integral_constant<int, 0>>>::value,
                "");

  static_assert(std::is_base_of<
                    std::false_type,
                    internal::negation<std::integral_constant<int, 1>>>::value,
                "");

  static_assert(std::is_base_of<
                    std::false_type,
                    internal::negation<std::integral_constant<int, -1>>>::value,
                "");
}

// Weird false/true types that aren't actually bool constants (but should still
// be legal according to [meta.logical] because `bool(T::value)` is valid), are
// distinct from std::false_type and std::true_type, and are distinct from other
// instantiations of the same template.
//
// These let us check finicky details mandated by the standard like
// "std::conjunction should evaluate to a type that inherits from the first
// false-y input".
template <int>
struct MyFalse : std::integral_constant<int, 0> {};

template <int>
struct MyTrue : std::integral_constant<int, -1> {};

TEST(TypeTraits, Conjunction) {
  // Base case: always true.
  static_assert(std::is_base_of<std::true_type, internal::conjunction<>>::value,
                "");

  // One predicate: inherits from that predicate, regardless of value.
  static_assert(
      std::is_base_of<MyFalse<0>, internal::conjunction<MyFalse<0>>>::value,
      "");

  static_assert(
      std::is_base_of<MyTrue<0>, internal::conjunction<MyTrue<0>>>::value, "");

  // Multiple predicates, with at least one false: inherits from that one.
  static_assert(
      std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
                                                        MyTrue<2>>>::value,
      "");

  static_assert(
      std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
                                                        MyFalse<2>>>::value,
      "");

  // Short circuiting: in the case above, additional predicates need not even
  // define a value member.
  struct Empty {};
  static_assert(
      std::is_base_of<MyFalse<1>, internal::conjunction<MyTrue<0>, MyFalse<1>,
                                                        Empty>>::value,
      "");

  // All predicates true: inherits from the last.
  static_assert(
      std::is_base_of<MyTrue<2>, internal::conjunction<MyTrue<0>, MyTrue<1>,
                                                       MyTrue<2>>>::value,
      "");
}

TEST(TypeTraits, Disjunction) {
  // Base case: always false.
  static_assert(
      std::is_base_of<std::false_type, internal::disjunction<>>::value, "");

  // One predicate: inherits from that predicate, regardless of value.
  static_assert(
      std::is_base_of<MyFalse<0>, internal::disjunction<MyFalse<0>>>::value,
      "");

  static_assert(
      std::is_base_of<MyTrue<0>, internal::disjunction<MyTrue<0>>>::value, "");

  // Multiple predicates, with at least one true: inherits from that one.
  static_assert(
      std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
                                                       MyFalse<2>>>::value,
      "");

  static_assert(
      std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
                                                       MyTrue<2>>>::value,
      "");

  // Short circuiting: in the case above, additional predicates need not even
  // define a value member.
  struct Empty {};
  static_assert(
      std::is_base_of<MyTrue<1>, internal::disjunction<MyFalse<0>, MyTrue<1>,
                                                       Empty>>::value,
      "");

  // All predicates false: inherits from the last.
  static_assert(
      std::is_base_of<MyFalse<2>, internal::disjunction<MyFalse<0>, MyFalse<1>,
                                                        MyFalse<2>>>::value,
      "");
}

TEST(TypeTraits, IsInvocableRV) {
  struct C {
    int operator()() const { return 0; }
    void operator()(int) & {}
    std::string operator()(int) && { return ""; };
  };

  // The first overload is callable for const and non-const rvalues and lvalues.
  // It can be used to obtain an int, cv void, or anything int is convertible
  // to.
  static_assert(internal::is_callable_r<int, C>::value, "");
  static_assert(internal::is_callable_r<int, C&>::value, "");
  static_assert(internal::is_callable_r<int, const C>::value, "");
  static_assert(internal::is_callable_r<int, const C&>::value, "");

  static_assert(internal::is_callable_r<void, C>::value, "");
  static_assert(internal::is_callable_r<const volatile void, C>::value, "");
  static_assert(internal::is_callable_r<char, C>::value, "");

  // It's possible to provide an int. If it's given to an lvalue, the result is
  // void. Otherwise it is std::string (which is also treated as allowed for a
  // void result type).
  static_assert(internal::is_callable_r<void, C&, int>::value, "");
  static_assert(!internal::is_callable_r<int, C&, int>::value, "");
  static_assert(!internal::is_callable_r<std::string, C&, int>::value, "");
  static_assert(!internal::is_callable_r<void, const C&, int>::value, "");

  static_assert(internal::is_callable_r<std::string, C, int>::value, "");
  static_assert(internal::is_callable_r<void, C, int>::value, "");
  static_assert(!internal::is_callable_r<int, C, int>::value, "");

  // It's not possible to provide other arguments.
  static_assert(!internal::is_callable_r<void, C, std::string>::value, "");
  static_assert(!internal::is_callable_r<void, C, int, int>::value, "");

  // In C++17 and above, where it's guaranteed that functions can return
  // non-moveable objects, everything should work fine for non-moveable rsult
  // types too.
#if defined(__cplusplus) && __cplusplus >= 201703L
  {
    struct NonMoveable {
      NonMoveable() = default;
      NonMoveable(NonMoveable&&) = delete;
    };

    static_assert(!std::is_move_constructible_v<NonMoveable>);

    struct Callable {
      NonMoveable operator()() { return NonMoveable(); }
    };

    static_assert(internal::is_callable_r<NonMoveable, Callable>::value);
    static_assert(internal::is_callable_r<void, Callable>::value);
    static_assert(
        internal::is_callable_r<const volatile void, Callable>::value);

    static_assert(!internal::is_callable_r<int, Callable>::value);
    static_assert(!internal::is_callable_r<NonMoveable, Callable, int>::value);
  }
#endif  // C++17 and above

  // Nothing should choke when we try to call other arguments besides directly
  // callable objects, but they should not show up as callable.
  static_assert(!internal::is_callable_r<void, int>::value, "");
  static_assert(!internal::is_callable_r<void, void (C::*)()>::value, "");
  static_assert(!internal::is_callable_r<void, void (C::*)(), C*>::value, "");
}

// Tests that BuiltInDefaultValue<T*>::Get() returns NULL.
TEST(BuiltInDefaultValueTest, IsNullForPointerTypes) {
  EXPECT_TRUE(BuiltInDefaultValue<int*>::Get() == nullptr);
  EXPECT_TRUE(BuiltInDefaultValue<const char*>::Get() == nullptr);
  EXPECT_TRUE(BuiltInDefaultValue<void*>::Get() == nullptr);
}

// Tests that BuiltInDefaultValue<T*>::Exists() return true.
TEST(BuiltInDefaultValueTest, ExistsForPointerTypes) {
  EXPECT_TRUE(BuiltInDefaultValue<int*>::Exists());
  EXPECT_TRUE(BuiltInDefaultValue<const char*>::Exists());
  EXPECT_TRUE(BuiltInDefaultValue<void*>::Exists());
}

// Tests that BuiltInDefaultValue<T>::Get() returns 0 when T is a
// built-in numeric type.
TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) {
  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned char>::Get());
  EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get());
  EXPECT_EQ(0, BuiltInDefaultValue<char>::Get());
#if GMOCK_WCHAR_T_IS_NATIVE_
#if !defined(__WCHAR_UNSIGNED__)
  EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get());
#else
  EXPECT_EQ(0U, BuiltInDefaultValue<wchar_t>::Get());
#endif
#endif
  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned short>::Get());  // NOLINT
  EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get());     // NOLINT
  EXPECT_EQ(0, BuiltInDefaultValue<short>::Get());            // NOLINT
  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned int>::Get());
  EXPECT_EQ(0, BuiltInDefaultValue<signed int>::Get());
  EXPECT_EQ(0, BuiltInDefaultValue<int>::Get());
  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long>::Get());       // NOLINT
  EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get());          // NOLINT
  EXPECT_EQ(0, BuiltInDefaultValue<long>::Get());                 // NOLINT
  EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long long>::Get());  // NOLINT
  EXPECT_EQ(0, BuiltInDefaultValue<signed long long>::Get());     // NOLINT
  EXPECT_EQ(0, BuiltInDefaultValue<long long>::Get());            // NOLINT
  EXPECT_EQ(0, BuiltInDefaultValue<float>::Get());
  EXPECT_EQ(0, BuiltInDefaultValue<double>::Get());
}

// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
// built-in numeric type.
TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) {
  EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists());
  EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists());
  EXPECT_TRUE(BuiltInDefaultValue<char>::Exists());
#if GMOCK_WCHAR_T_IS_NATIVE_
  EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists());
#endif
  EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists());  // NOLINT
  EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists());    // NOLINT
  EXPECT_TRUE(BuiltInDefaultValue<short>::Exists());           // NOLINT
  EXPECT_TRUE(BuiltInDefaultValue<unsigned int>::Exists());
  EXPECT_TRUE(BuiltInDefaultValue<signed int>::Exists());
  EXPECT_TRUE(BuiltInDefaultValue<int>::Exists());
  EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists());       // NOLINT
  EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists());         // NOLINT
  EXPECT_TRUE(BuiltInDefaultValue<long>::Exists());                // NOLINT
  EXPECT_TRUE(BuiltInDefaultValue<unsigned long long>::Exists());  // NOLINT
  EXPECT_TRUE(BuiltInDefaultValue<signed long long>::Exists());    // NOLINT
  EXPECT_TRUE(BuiltInDefaultValue<long long>::Exists());           // NOLINT
  EXPECT_TRUE(BuiltInDefaultValue<float>::Exists());
  EXPECT_TRUE(BuiltInDefaultValue<double>::Exists());
}

// Tests that BuiltInDefaultValue<bool>::Get() returns false.
TEST(BuiltInDefaultValueTest, IsFalseForBool) {
  EXPECT_FALSE(BuiltInDefaultValue<bool>::Get());
}

// Tests that BuiltInDefaultValue<bool>::Exists() returns true.
TEST(BuiltInDefaultValueTest, BoolExists) {
  EXPECT_TRUE(BuiltInDefaultValue<bool>::Exists());
}

// Tests that BuiltInDefaultValue<T>::Get() returns "" when T is a
// string type.
TEST(BuiltInDefaultValueTest, IsEmptyStringForString) {
  EXPECT_EQ("", BuiltInDefaultValue<::std::string>::Get());
}

// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
// string type.
TEST(BuiltInDefaultValueTest, ExistsForString) {
  EXPECT_TRUE(BuiltInDefaultValue<::std::string>::Exists());
}

// Tests that BuiltInDefaultValue<const T>::Get() returns the same
// value as BuiltInDefaultValue<T>::Get() does.
TEST(BuiltInDefaultValueTest, WorksForConstTypes) {
  EXPECT_EQ("", BuiltInDefaultValue<const std::string>::Get());
  EXPECT_EQ(0, BuiltInDefaultValue<const int>::Get());
  EXPECT_TRUE(BuiltInDefaultValue<char* const>::Get() == nullptr);
  EXPECT_FALSE(BuiltInDefaultValue<const bool>::Get());
}

// A type that's default constructible.
class MyDefaultConstructible {
 public:
  MyDefaultConstructible() : value_(42) {}

  int value() const { return value_; }

 private:
  int value_;
};

// A type that's not default constructible.
class MyNonDefaultConstructible {
 public:
  // Does not have a default ctor.
  explicit MyNonDefaultConstructible(int a_value) : value_(a_value) {}

  int value() const { return value_; }

 private:
  int value_;
};

TEST(BuiltInDefaultValueTest, ExistsForDefaultConstructibleType) {
  EXPECT_TRUE(BuiltInDefaultValue<MyDefaultConstructible>::Exists());
}

TEST(BuiltInDefaultValueTest, IsDefaultConstructedForDefaultConstructibleType) {
  EXPECT_EQ(42, BuiltInDefaultValue<MyDefaultConstructible>::Get().value());
}

TEST(BuiltInDefaultValueTest, DoesNotExistForNonDefaultConstructibleType) {
  EXPECT_FALSE(BuiltInDefaultValue<MyNonDefaultConstructible>::Exists());
}

// Tests that BuiltInDefaultValue<T&>::Get() aborts the program.
TEST(BuiltInDefaultValueDeathTest, IsUndefinedForReferences) {
  EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<int&>::Get(); }, "");
  EXPECT_DEATH_IF_SUPPORTED({ BuiltInDefaultValue<const char&>::Get(); }, "");
}

TEST(BuiltInDefaultValueDeathTest, IsUndefinedForNonDefaultConstructibleType) {
  EXPECT_DEATH_IF_SUPPORTED(
      { BuiltInDefaultValue<MyNonDefaultConstructible>::Get(); }, "");
}

// Tests that DefaultValue<T>::IsSet() is false initially.
TEST(DefaultValueTest, IsInitiallyUnset) {
  EXPECT_FALSE(DefaultValue<int>::IsSet());
  EXPECT_FALSE(DefaultValue<MyDefaultConstructible>::IsSet());
  EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
}

// Tests that DefaultValue<T> can be set and then unset.
TEST(DefaultValueTest, CanBeSetAndUnset) {
  EXPECT_TRUE(DefaultValue<int>::Exists());
  EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());

  DefaultValue<int>::Set(1);
  DefaultValue<const MyNonDefaultConstructible>::Set(
      MyNonDefaultConstructible(42));

  EXPECT_EQ(1, DefaultValue<int>::Get());
  EXPECT_EQ(42, DefaultValue<const MyNonDefaultConstructible>::Get().value());

  EXPECT_TRUE(DefaultValue<int>::Exists());
  EXPECT_TRUE(DefaultValue<const MyNonDefaultConstructible>::Exists());

  DefaultValue<int>::Clear();
  DefaultValue<const MyNonDefaultConstructible>::Clear();

  EXPECT_FALSE(DefaultValue<int>::IsSet());
  EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());

  EXPECT_TRUE(DefaultValue<int>::Exists());
  EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
}

// Tests that DefaultValue<T>::Get() returns the
// BuiltInDefaultValue<T>::Get() when DefaultValue<T>::IsSet() is
// false.
TEST(DefaultValueDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
  EXPECT_FALSE(DefaultValue<int>::IsSet());
  EXPECT_TRUE(DefaultValue<int>::Exists());
  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::IsSet());
  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::Exists());

  EXPECT_EQ(0, DefaultValue<int>::Get());

  EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<MyNonDefaultConstructible>::Get(); },
                            "");
}

TEST(DefaultValueTest, GetWorksForMoveOnlyIfSet) {
  EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
  EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Get() == nullptr);
  DefaultValue<std::unique_ptr<int>>::SetFactory(
      [] { return std::unique_ptr<int>(new int(42)); });
  EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
  std::unique_ptr<int> i = DefaultValue<std::unique_ptr<int>>::Get();
  EXPECT_EQ(42, *i);
}

// Tests that DefaultValue<void>::Get() returns void.
TEST(DefaultValueTest, GetWorksForVoid) { return DefaultValue<void>::Get(); }

// Tests using DefaultValue with a reference type.

// Tests that DefaultValue<T&>::IsSet() is false initially.
TEST(DefaultValueOfReferenceTest, IsInitiallyUnset) {
  EXPECT_FALSE(DefaultValue<int&>::IsSet());
  EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::IsSet());
  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
}

// Tests that DefaultValue<T&>::Exists is false initiallly.
TEST(DefaultValueOfReferenceTest, IsInitiallyNotExisting) {
  EXPECT_FALSE(DefaultValue<int&>::Exists());
  EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::Exists());
  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
}

// Tests that DefaultValue<T&> can be set and then unset.
TEST(DefaultValueOfReferenceTest, CanBeSetAndUnset) {
  int n = 1;
  DefaultValue<const int&>::Set(n);
  MyNonDefaultConstructible x(42);
  DefaultValue<MyNonDefaultConstructible&>::Set(x);

  EXPECT_TRUE(DefaultValue<const int&>::Exists());
  EXPECT_TRUE(DefaultValue<MyNonDefaultConstructible&>::Exists());

  EXPECT_EQ(&n, &(DefaultValue<const int&>::Get()));
  EXPECT_EQ(&x, &(DefaultValue<MyNonDefaultConstructible&>::Get()));

  DefaultValue<const int&>::Clear();
  DefaultValue<MyNonDefaultConstructible&>::Clear();

  EXPECT_FALSE(DefaultValue<const int&>::Exists());
  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());

  EXPECT_FALSE(DefaultValue<const int&>::IsSet());
  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
}

// Tests that DefaultValue<T&>::Get() returns the
// BuiltInDefaultValue<T&>::Get() when DefaultValue<T&>::IsSet() is
// false.
TEST(DefaultValueOfReferenceDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
  EXPECT_FALSE(DefaultValue<int&>::IsSet());
  EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());

  EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<int&>::Get(); }, "");
  EXPECT_DEATH_IF_SUPPORTED({ DefaultValue<MyNonDefaultConstructible>::Get(); },
                            "");
}

// Tests that ActionInterface can be implemented by defining the
// Perform method.

typedef int MyGlobalFunction(bool, int);

class MyActionImpl : public ActionInterface<MyGlobalFunction> {
 public:
  int Perform(const std::tuple<bool, int>& args) override {
    return std::get<0>(args) ? std::get<1>(args) : 0;
  }
};

TEST(ActionInterfaceTest, CanBeImplementedByDefiningPerform) {
  MyActionImpl my_action_impl;
  (void)my_action_impl;
}

TEST(ActionInterfaceTest, MakeAction) {
  Action<MyGlobalFunction> action = MakeAction(new MyActionImpl);

  // When exercising the Perform() method of Action<F>, we must pass
  // it a tuple whose size and type are compatible with F's argument
  // types.  For example, if F is int(), then Perform() takes a
  // 0-tuple; if F is void(bool, int), then Perform() takes a
  // std::tuple<bool, int>, and so on.
  EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
}

// Tests that Action<F> can be constructed from a pointer to
// ActionInterface<F>.
TEST(ActionTest, CanBeConstructedFromActionInterface) {
  Action<MyGlobalFunction> action(new MyActionImpl);
}

// Tests that Action<F> delegates actual work to ActionInterface<F>.
TEST(ActionTest, DelegatesWorkToActionInterface) {
  const Action<MyGlobalFunction> action(new MyActionImpl);

  EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
  EXPECT_EQ(0, action.Perform(std::make_tuple(false, 1)));
}

// Tests that Action<F> can be copied.
TEST(ActionTest, IsCopyable) {
  Action<MyGlobalFunction> a1(new MyActionImpl);
  Action<MyGlobalFunction> a2(a1);  // Tests the copy constructor.

  // a1 should continue to work after being copied from.
  EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
  EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));

  // a2 should work like the action it was copied from.
  EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
  EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));

  a2 = a1;  // Tests the assignment operator.

  // a1 should continue to work after being copied from.
  EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
  EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));

  // a2 should work like the action it was copied from.
  EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
  EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));
}

// Tests that an Action<From> object can be converted to a
// compatible Action<To> object.

class IsNotZero : public ActionInterface<bool(int)> {  // NOLINT
 public:
  bool Perform(const std::tuple<int>& arg) override {
    return std::get<0>(arg) != 0;
  }
};

TEST(ActionTest, CanBeConvertedToOtherActionType) {
  const Action<bool(int)> a1(new IsNotZero);           // NOLINT
  const Action<int(char)> a2 = Action<int(char)>(a1);  // NOLINT
  EXPECT_EQ(1, a2.Perform(std::make_tuple('a')));
  EXPECT_EQ(0, a2.Perform(std::make_tuple('\0')));
}

// The following two classes are for testing MakePolymorphicAction().

// Implements a polymorphic action that returns the second of the
// arguments it receives.
class ReturnSecondArgumentAction {
 public:
  // We want to verify that MakePolymorphicAction() can work with a
  // polymorphic action whose Perform() method template is either
  // const or not.  This lets us verify the non-const case.
  template <typename Result, typename ArgumentTuple>
  Result Perform(const ArgumentTuple& args) {
    return std::get<1>(args);
  }
};

// Implements a polymorphic action that can be used in a nullary
// function to return 0.
class ReturnZeroFromNullaryFunctionAction {
 public:
  // For testing that MakePolymorphicAction() works when the
  // implementation class' Perform() method template takes only one
  // template parameter.
  //
  // We want to verify that MakePolymorphicAction() can work with a
  // polymorphic action whose Perform() method template is either
  // const or not.  This lets us verify the const case.
  template <typename Result>
  Result Perform(const std::tuple<>&) const {
    return 0;
  }
};

// These functions verify that MakePolymorphicAction() returns a
// PolymorphicAction<T> where T is the argument's type.

PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() {
  return MakePolymorphicAction(ReturnSecondArgumentAction());
}

PolymorphicAction<ReturnZeroFromNullaryFunctionAction>
ReturnZeroFromNullaryFunction() {
  return MakePolymorphicAction(ReturnZeroFromNullaryFunctionAction());
}

// Tests that MakePolymorphicAction() turns a polymorphic action
// implementation class into a polymorphic action.
TEST(MakePolymorphicActionTest, ConstructsActionFromImpl) {
  Action<int(bool, int, double)> a1 = ReturnSecondArgument();  // NOLINT
  EXPECT_EQ(5, a1.Perform(std::make_tuple(false, 5, 2.0)));
}

// Tests that MakePolymorphicAction() works when the implementation
// class' Perform() method template has only one template parameter.
TEST(MakePolymorphicActionTest, WorksWhenPerformHasOneTemplateParameter) {
  Action<int()> a1 = ReturnZeroFromNullaryFunction();
  EXPECT_EQ(0, a1.Perform(std::make_tuple()));

  Action<void*()> a2 = ReturnZeroFromNullaryFunction();
  EXPECT_TRUE(a2.Perform(std::make_tuple()) == nullptr);
}

// Tests that Return() works as an action for void-returning
// functions.
TEST(ReturnTest, WorksForVoid) {
  const Action<void(int)> ret = Return();  // NOLINT
  return ret.Perform(std::make_tuple(1));
}

// Tests that Return(v) returns v.
TEST(ReturnTest, ReturnsGivenValue) {
  Action<int()> ret = Return(1);  // NOLINT
  EXPECT_EQ(1, ret.Perform(std::make_tuple()));

  ret = Return(-5);
  EXPECT_EQ(-5, ret.Perform(std::make_tuple()));
}

// Tests that Return("string literal") works.
TEST(ReturnTest, AcceptsStringLiteral) {
  Action<const char*()> a1 = Return("Hello");
  EXPECT_STREQ("Hello", a1.Perform(std::make_tuple()));

  Action<std::string()> a2 = Return("world");
  EXPECT_EQ("world", a2.Perform(std::make_tuple()));
}

// Return(x) should work fine when the mock function's return type is a
// reference-like wrapper for decltype(x), as when x is a std::string and the
// mock function returns std::string_view.
TEST(ReturnTest, SupportsReferenceLikeReturnType) {
  // A reference wrapper for std::vector<int>, implicitly convertible from it.
  struct Result {
    const std::vector<int>* v;
    Result(const std::vector<int>& v) : v(&v) {}  // NOLINT
  };

  // Set up an action for a mock function that returns the reference wrapper
  // type, initializing it with an actual vector.
  //
  // The returned wrapper should be initialized with a copy of that vector
  // that's embedded within the action itself (which should stay alive as long
  // as the mock object is alive), rather than e.g. a reference to the temporary
  // we feed to Return. This should work fine both for WillOnce and
  // WillRepeatedly.
  MockFunction<Result()> mock;
  EXPECT_CALL(mock, Call)
      .WillOnce(Return(std::vector<int>{17, 19, 23}))
      .WillRepeatedly(Return(std::vector<int>{29, 31, 37}));

  EXPECT_THAT(mock.AsStdFunction()(),
              Field(&Result::v, Pointee(ElementsAre(17, 19, 23))));

  EXPECT_THAT(mock.AsStdFunction()(),
              Field(&Result::v, Pointee(ElementsAre(29, 31, 37))));
}

TEST(ReturnTest, PrefersConversionOperator) {
  // Define types In and Out such that:
  //
  //  *  In is implicitly convertible to Out.
  //  *  Out also has an explicit constructor from In.
  //
  struct In;
  struct Out {
    int x;

    explicit Out(const int x) : x(x) {}
    explicit Out(const In&) : x(0) {}
  };

  struct In {
    operator Out() const { return Out{19}; }  // NOLINT
  };

  // Assumption check: the C++ language rules are such that a function that
  // returns Out which uses In a return statement will use the implicit
  // conversion path rather than the explicit constructor.
  EXPECT_THAT([]() -> Out { return In(); }(), Field(&Out::x, 19));

  // Return should work the same way: if the mock function's return type is Out
  // and we feed Return an In value, then the Out should be created through the
  // implicit conversion path rather than the explicit constructor.
  MockFunction<Out()> mock;
  EXPECT_CALL(mock, Call).WillOnce(Return(In()));
  EXPECT_THAT(mock.AsStdFunction()(), Field(&Out::x, 19));
}

// It should be possible to use Return(R) with a mock function result type U
// that is convertible from const R& but *not* R (such as
// std::reference_wrapper). This should work for both WillOnce and
// WillRepeatedly.
TEST(ReturnTest, ConversionRequiresConstLvalueReference) {
  using R = int;
  using U = std::reference_wrapper<const int>;

  static_assert(std::is_convertible<const R&, U>::value, "");
  static_assert(!std::is_convertible<R, U>::value, "");

  MockFunction<U()> mock;
  EXPECT_CALL(mock, Call).WillOnce(Return(17)).WillRepeatedly(Return(19));

  EXPECT_EQ(17, mock.AsStdFunction()());
  EXPECT_EQ(19, mock.AsStdFunction()());
}

// Return(x) should not be usable with a mock function result type that's
// implicitly convertible from decltype(x) but requires a non-const lvalue
// reference to the input. It doesn't make sense for the conversion operator to
// modify the input.
TEST(ReturnTest, ConversionRequiresMutableLvalueReference) {
  // Set up a type that is implicitly convertible from std::string&, but not
  // std::string&& or `const std::string&`.
  //
  // Avoid asserting about conversion from std::string on MSVC, which seems to
  // implement std::is_convertible incorrectly in this case.
  struct S {
    S(std::string&) {}  // NOLINT
  };

  static_assert(std::is_convertible<std::string&, S>::value, "");
#ifndef _MSC_VER
  static_assert(!std::is_convertible<std::string&&, S>::value, "");
#endif
  static_assert(!std::is_convertible<const std::string&, S>::value, "");

  // It shouldn't be possible to use the result of Return(std::string) in a
  // context where an S is needed.
  //
  // Here too we disable the assertion for MSVC, since its incorrect
  // implementation of is_convertible causes our SFINAE to be wrong.
  using RA = decltype(Return(std::string()));

  static_assert(!std::is_convertible<RA, Action<S()>>::value, "");
#ifndef _MSC_VER
  static_assert(!std::is_convertible<RA, OnceAction<S()>>::value, "");
#endif
}

TEST(ReturnTest, MoveOnlyResultType) {
  // Return should support move-only result types when used with WillOnce.
  {
    MockFunction<std::unique_ptr<int>()> mock;
    EXPECT_CALL(mock, Call)
        // NOLINTNEXTLINE
        .WillOnce(Return(std::unique_ptr<int>(new int(17))));

    EXPECT_THAT(mock.AsStdFunction()(), Pointee(17));
  }

  // The result of Return should not be convertible to Action (so it can't be
  // used with WillRepeatedly).
  static_assert(!std::is_convertible<decltype(Return(std::unique_ptr<int>())),
                                     Action<std::unique_ptr<int>()>>::value,
                "");
}

// Tests that Return(v) is covaraint.

struct Base {
  bool operator==(const Base&) { return true; }
};

struct Derived : public Base {
  bool operator==(const Derived&) { return true; }
};

TEST(ReturnTest, IsCovariant) {
  Base base;
  Derived derived;
  Action<Base*()> ret = Return(&base);
  EXPECT_EQ(&base, ret.Perform(std::make_tuple()));

  ret = Return(&derived);
  EXPECT_EQ(&derived, ret.Perform(std::make_tuple()));
}

// Tests that the type of the value passed into Return is converted into T
// when the action is cast to Action<T(...)> rather than when the action is
// performed. See comments on testing::internal::ReturnAction in
// gmock-actions.h for more information.
class FromType {
 public:
  explicit FromType(bool* is_converted) : converted_(is_converted) {}
  bool* converted() const { return converted_; }

 private:
  bool* const converted_;
};

class ToType {
 public:
  // Must allow implicit conversion due to use in ImplicitCast_<T>.
  ToType(const FromType& x) { *x.converted() = true; }  // NOLINT
};

TEST(ReturnTest, ConvertsArgumentWhenConverted) {
  bool converted = false;
  FromType x(&converted);
  Action<ToType()> action(Return(x));
  EXPECT_TRUE(converted) << "Return must convert its argument in its own "
                         << "conversion operator.";
  converted = false;
  action.Perform(std::tuple<>());
  EXPECT_FALSE(converted) << "Action must NOT convert its argument "
                          << "when performed.";
}

// Tests that ReturnNull() returns NULL in a pointer-returning function.
TEST(ReturnNullTest, WorksInPointerReturningFunction) {
  const Action<int*()> a1 = ReturnNull();
  EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);

  const Action<const char*(bool)> a2 = ReturnNull();  // NOLINT
  EXPECT_TRUE(a2.Perform(std::make_tuple(true)) == nullptr);
}

// Tests that ReturnNull() returns NULL for shared_ptr and unique_ptr returning
// functions.
TEST(ReturnNullTest, WorksInSmartPointerReturningFunction) {
  const Action<std::unique_ptr<const int>()> a1 = ReturnNull();
  EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);

  const Action<std::shared_ptr<int>(std::string)> a2 = ReturnNull();
  EXPECT_TRUE(a2.Perform(std::make_tuple("foo")) == nullptr);
}

// Tests that ReturnRef(v) works for reference types.
TEST(ReturnRefTest, WorksForReference) {
  const int n = 0;
  const Action<const int&(bool)> ret = ReturnRef(n);  // NOLINT

  EXPECT_EQ(&n, &ret.Perform(std::make_tuple(true)));
}

// Tests that ReturnRef(v) is covariant.
TEST(ReturnRefTest, IsCovariant) {
  Base base;
  Derived derived;
  Action<Base&()> a = ReturnRef(base);
  EXPECT_EQ(&base, &a.Perform(std::make_tuple()));

  a = ReturnRef(derived);
  EXPECT_EQ(&derived, &a.Perform(std::make_tuple()));
}

template <typename T, typename = decltype(ReturnRef(std::declval<T&&>()))>
bool CanCallReturnRef(T&&) {
  return true;
}
bool CanCallReturnRef(Unused) { return false; }

// Tests that ReturnRef(v) is working with non-temporaries (T&)
TEST(ReturnRefTest, WorksForNonTemporary) {
  int scalar_value = 123;
  EXPECT_TRUE(CanCallReturnRef(scalar_value));

  std::string non_scalar_value("ABC");
  EXPECT_TRUE(CanCallReturnRef(non_scalar_value));

  const int const_scalar_value{321};
  EXPECT_TRUE(CanCallReturnRef(const_scalar_value));

  const std::string const_non_scalar_value("CBA");
  EXPECT_TRUE(CanCallReturnRef(const_non_scalar_value));
}

// Tests that ReturnRef(v) is not working with temporaries (T&&)
TEST(ReturnRefTest, DoesNotWorkForTemporary) {
  auto scalar_value = []() -> int { return 123; };
  EXPECT_FALSE(CanCallReturnRef(scalar_value()));

  auto non_scalar_value = []() -> std::string { return "ABC"; };
  EXPECT_FALSE(CanCallReturnRef(non_scalar_value()));

  // cannot use here callable returning "const scalar type",
  // because such const for scalar return type is ignored
  EXPECT_FALSE(CanCallReturnRef(static_cast<const int>(321)));

  auto const_non_scalar_value = []() -> const std::string { return "CBA"; };
  EXPECT_FALSE(CanCallReturnRef(const_non_scalar_value()));
}

// Tests that ReturnRefOfCopy(v) works for reference types.
TEST(ReturnRefOfCopyTest, WorksForReference) {
  int n = 42;
  const Action<const int&()> ret = ReturnRefOfCopy(n);

  EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
  EXPECT_EQ(42, ret.Perform(std::make_tuple()));

  n = 43;
  EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
  EXPECT_EQ(42, ret.Perform(std::make_tuple()));
}

// Tests that ReturnRefOfCopy(v) is covariant.
TEST(ReturnRefOfCopyTest, IsCovariant) {
  Base base;
  Derived derived;
  Action<Base&()> a = ReturnRefOfCopy(base);
  EXPECT_NE(&base, &a.Perform(std::make_tuple()));

  a = ReturnRefOfCopy(derived);
  EXPECT_NE(&derived, &a.Perform(std::make_tuple()));
}

// Tests that ReturnRoundRobin(v) works with initializer lists
TEST(ReturnRoundRobinTest, WorksForInitList) {
  Action<int()> ret = ReturnRoundRobin({1, 2, 3});

  EXPECT_EQ(1, ret.Perform(std::make_tuple()));
  EXPECT_EQ(2, ret.Perform(std::make_tuple()));
  EXPECT_EQ(3, ret.Perform(std::make_tuple()));
  EXPECT_EQ(1, ret.Perform(std::make_tuple()));
  EXPECT_EQ(2, ret.Perform(std::make_tuple()));
  EXPECT_EQ(3, ret.Perform(std::make_tuple()));
}

// Tests that ReturnRoundRobin(v) works with vectors
TEST(ReturnRoundRobinTest, WorksForVector) {
  std::vector<double> v = {4.4, 5.5, 6.6};
  Action<double()> ret = ReturnRoundRobin(v);

  EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
  EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
  EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
  EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
  EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
  EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
}

// Tests that DoDefault() does the default action for the mock method.

class MockClass {
 public:
  MockClass() {}

  MOCK_METHOD1(IntFunc, int(bool flag));  // NOLINT
  MOCK_METHOD0(Foo, MyNonDefaultConstructible());
  MOCK_METHOD0(MakeUnique, std::unique_ptr<int>());
  MOCK_METHOD0(MakeUniqueBase, std::unique_ptr<Base>());
  MOCK_METHOD0(MakeVectorUnique, std::vector<std::unique_ptr<int>>());
  MOCK_METHOD1(TakeUnique, int(std::unique_ptr<int>));
  MOCK_METHOD2(TakeUnique,
               int(const std::unique_ptr<int>&, std::unique_ptr<int>));

 private:
  MockClass(const MockClass&) = delete;
  MockClass& operator=(const MockClass&) = delete;
};

// Tests that DoDefault() returns the built-in default value for the
// return type by default.
TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) {
  MockClass mock;
  EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
  EXPECT_EQ(0, mock.IntFunc(true));
}

// Tests that DoDefault() throws (when exceptions are enabled) or aborts
// the process when there is no built-in default value for the return type.
TEST(DoDefaultDeathTest, DiesForUnknowType) {
  MockClass mock;
  EXPECT_CALL(mock, Foo()).WillRepeatedly(DoDefault());
#if GTEST_HAS_EXCEPTIONS
  EXPECT_ANY_THROW(mock.Foo());
#else
  EXPECT_DEATH_IF_SUPPORTED({ mock.Foo(); }, "");
#endif
}

// Tests that using DoDefault() inside a composite action leads to a
// run-time error.

void VoidFunc(bool /* flag */) {}

TEST(DoDefaultDeathTest, DiesIfUsedInCompositeAction) {
  MockClass mock;
  EXPECT_CALL(mock, IntFunc(_))
      .WillRepeatedly(DoAll(Invoke(VoidFunc), DoDefault()));

  // Ideally we should verify the error message as well.  Sadly,
  // EXPECT_DEATH() can only capture stderr, while Google Mock's
  // errors are printed on stdout.  Therefore we have to settle for
  // not verifying the message.
  EXPECT_DEATH_IF_SUPPORTED({ mock.IntFunc(true); }, "");
}

// Tests that DoDefault() returns the default value set by
// DefaultValue<T>::Set() when it's not overridden by an ON_CALL().
TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) {
  DefaultValue<int>::Set(1);
  MockClass mock;
  EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
  EXPECT_EQ(1, mock.IntFunc(false));
  DefaultValue<int>::Clear();
}

// Tests that DoDefault() does the action specified by ON_CALL().
TEST(DoDefaultTest, DoesWhatOnCallSpecifies) {
  MockClass mock;
  ON_CALL(mock, IntFunc(_)).WillByDefault(Return(2));
  EXPECT_CALL(mock, IntFunc(_)).WillOnce(DoDefault());
  EXPECT_EQ(2, mock.IntFunc(false));
}

// Tests that using DoDefault() in ON_CALL() leads to a run-time failure.
TEST(DoDefaultTest, CannotBeUsedInOnCall) {
  MockClass mock;
  EXPECT_NONFATAL_FAILURE(
      {  // NOLINT
        ON_CALL(mock, IntFunc(_)).WillByDefault(DoDefault());
      },
      "DoDefault() cannot be used in ON_CALL()");
}

// Tests that SetArgPointee<N>(v) sets the variable pointed to by
// the N-th (0-based) argument to v.
TEST(SetArgPointeeTest, SetsTheNthPointee) {
  typedef void MyFunction(bool, int*, char*);
  Action<MyFunction> a = SetArgPointee<1>(2);

  int n = 0;
  char ch = '\0';
  a.Perform(std::make_tuple(true, &n, &ch));
  EXPECT_EQ(2, n);
  EXPECT_EQ('\0', ch);

  a = SetArgPointee<2>('a');
  n = 0;
  ch = '\0';
  a.Perform(std::make_tuple(true, &n, &ch));
  EXPECT_EQ(0, n);
  EXPECT_EQ('a', ch);
}

// Tests that SetArgPointee<N>() accepts a string literal.
TEST(SetArgPointeeTest, AcceptsStringLiteral) {
  typedef void MyFunction(std::string*, const char**);
  Action<MyFunction> a = SetArgPointee<0>("hi");
  std::string str;
  const char* ptr = nullptr;
  a.Perform(std::make_tuple(&str, &ptr));
  EXPECT_EQ("hi", str);
  EXPECT_TRUE(ptr == nullptr);

  a = SetArgPointee<1>("world");
  str = "";
  a.Perform(std::make_tuple(&str, &ptr));
  EXPECT_EQ("", str);
  EXPECT_STREQ("world", ptr);
}

TEST(SetArgPointeeTest, AcceptsWideStringLiteral) {
  typedef void MyFunction(const wchar_t**);
  Action<MyFunction> a = SetArgPointee<0>(L"world");
  const wchar_t* ptr = nullptr;
  a.Perform(std::make_tuple(&ptr));
  EXPECT_STREQ(L"world", ptr);

#if GTEST_HAS_STD_WSTRING

  typedef void MyStringFunction(std::wstring*);
  Action<MyStringFunction> a2 = SetArgPointee<0>(L"world");
  std::wstring str = L"";
  a2.Perform(std::make_tuple(&str));
  EXPECT_EQ(L"world", str);

#endif
}

// Tests that SetArgPointee<N>() accepts a char pointer.
TEST(SetArgPointeeTest, AcceptsCharPointer) {
  typedef void MyFunction(bool, std::string*, const char**);
  const char* const hi = "hi";
  Action<MyFunction> a = SetArgPointee<1>(hi);
  std::string str;
  const char* ptr = nullptr;
  a.Perform(std::make_tuple(true, &str, &ptr));
  EXPECT_EQ("hi", str);
  EXPECT_TRUE(ptr == nullptr);

  char world_array[] = "world";
  char* const world = world_array;
  a = SetArgPointee<2>(world);
  str = "";
  a.Perform(std::make_tuple(true, &str, &ptr));
  EXPECT_EQ("", str);
  EXPECT_EQ(world, ptr);
}

TEST(SetArgPointeeTest, AcceptsWideCharPointer) {
  typedef void MyFunction(bool, const wchar_t**);
  const wchar_t* const hi = L"hi";
  Action<MyFunction> a = SetArgPointee<1>(hi);
  const wchar_t* ptr = nullptr;
  a.Perform(std::make_tuple(true, &ptr));
  EXPECT_EQ(hi, ptr);

#if GTEST_HAS_STD_WSTRING

  typedef void MyStringFunction(bool, std::wstring*);
  wchar_t world_array[] = L"world";
  wchar_t* const world = world_array;
  Action<MyStringFunction> a2 = SetArgPointee<1>(world);
  std::wstring str;
  a2.Perform(std::make_tuple(true, &str));
  EXPECT_EQ(world_array, str);
#endif
}

// Tests that SetArgumentPointee<N>(v) sets the variable pointed to by
// the N-th (0-based) argument to v.
TEST(SetArgumentPointeeTest, SetsTheNthPointee) {
  typedef void MyFunction(bool, int*, char*);
  Action<MyFunction> a = SetArgumentPointee<1>(2);

  int n = 0;
  char ch = '\0';
  a.Perform(std::make_tuple(true, &n, &ch));
  EXPECT_EQ(2, n);
  EXPECT_EQ('\0', ch);

  a = SetArgumentPointee<2>('a');
  n = 0;
  ch = '\0';
  a.Perform(std::make_tuple(true, &n, &ch));
  EXPECT_EQ(0, n);
  EXPECT_EQ('a', ch);
}

// Sample functions and functors for testing Invoke() and etc.
int Nullary() { return 1; }

class NullaryFunctor {
 public:
  int operator()() { return 2; }
};

bool g_done = false;
void VoidNullary() { g_done = true; }

class VoidNullaryFunctor {
 public:
  void operator()() { g_done = true; }
};

short Short(short n) { return n; }  // NOLINT
char Char(char ch) { return ch; }

const char* CharPtr(const char* s) { return s; }

bool Unary(int x) { return x < 0; }

const char* Binary(const char* input, short n) { return input + n; }  // NOLINT

void VoidBinary(int, char) { g_done = true; }

int Ternary(int x, char y, short z) { return x + y + z; }  // NOLINT

int SumOf4(int a, int b, int c, int d) { return a + b + c + d; }

class Foo {
 public:
  Foo() : value_(123) {}

  int Nullary() const { return value_; }

 private:
  int value_;
};

// Tests InvokeWithoutArgs(function).
TEST(InvokeWithoutArgsTest, Function) {
  // As an action that takes one argument.
  Action<int(int)> a = InvokeWithoutArgs(Nullary);  // NOLINT
  EXPECT_EQ(1, a.Perform(std::make_tuple(2)));

  // As an action that takes two arguments.
  Action<int(int, double)> a2 = InvokeWithoutArgs(Nullary);  // NOLINT
  EXPECT_EQ(1, a2.Perform(std::make_tuple(2, 3.5)));

  // As an action that returns void.
  Action<void(int)> a3 = InvokeWithoutArgs(VoidNullary);  // NOLINT
  g_done = false;
  a3.Perform(std::make_tuple(1));
  EXPECT_TRUE(g_done);
}

// Tests InvokeWithoutArgs(functor).
TEST(InvokeWithoutArgsTest, Functor) {
  // As an action that takes no argument.
  Action<int()> a = InvokeWithoutArgs(NullaryFunctor());  // NOLINT
  EXPECT_EQ(2, a.Perform(std::make_tuple()));

  // As an action that takes three arguments.
  Action<int(int, double, char)> a2 =  // NOLINT
      InvokeWithoutArgs(NullaryFunctor());
  EXPECT_EQ(2, a2.Perform(std::make_tuple(3, 3.5, 'a')));

  // As an action that returns void.
  Action<void()> a3 = InvokeWithoutArgs(VoidNullaryFunctor());
  g_done = false;
  a3.Perform(std::make_tuple());
  EXPECT_TRUE(g_done);
}

// Tests InvokeWithoutArgs(obj_ptr, method).
TEST(InvokeWithoutArgsTest, Method) {
  Foo foo;
  Action<int(bool, char)> a =  // NOLINT
      InvokeWithoutArgs(&foo, &Foo::Nullary);
  EXPECT_EQ(123, a.Perform(std::make_tuple(true, 'a')));
}

// Tests using IgnoreResult() on a polymorphic action.
TEST(IgnoreResultTest, PolymorphicAction) {
  Action<void(int)> a = IgnoreResult(Return(5));  // NOLINT
  a.Perform(std::make_tuple(1));
}

// Tests using IgnoreResult() on a monomorphic action.

int ReturnOne() {
  g_done = true;
  return 1;
}

TEST(IgnoreResultTest, MonomorphicAction) {
  g_done = false;
  Action<void()> a = IgnoreResult(Invoke(ReturnOne));
  a.Perform(std::make_tuple());
  EXPECT_TRUE(g_done);
}

// Tests using IgnoreResult() on an action that returns a class type.

MyNonDefaultConstructible ReturnMyNonDefaultConstructible(double /* x */) {
  g_done = true;
  return MyNonDefaultConstructible(42);
}

TEST(IgnoreResultTest, ActionReturningClass) {
  g_done = false;
  Action<void(int)> a =
      IgnoreResult(Invoke(ReturnMyNonDefaultConstructible));  // NOLINT
  a.Perform(std::make_tuple(2));
  EXPECT_TRUE(g_done);
}

TEST(AssignTest, Int) {
  int x = 0;
  Action<void(int)> a = Assign(&x, 5);
  a.Perform(std::make_tuple(0));
  EXPECT_EQ(5, x);
}

TEST(AssignTest, String) {
  ::std::string x;
  Action<void(void)> a = Assign(&x, "Hello, world");
  a.Perform(std::make_tuple());
  EXPECT_EQ("Hello, world", x);
}

TEST(AssignTest, CompatibleTypes) {
  double x = 0;
  Action<void(int)> a = Assign(&x, 5);
  a.Perform(std::make_tuple(0));
  EXPECT_DOUBLE_EQ(5, x);
}

// DoAll should support &&-qualified actions when used with WillOnce.
TEST(DoAll, SupportsRefQualifiedActions) {
  struct InitialAction {
    void operator()(const int arg) && { EXPECT_EQ(17, arg); }
  };

  struct FinalAction {
    int operator()() && { return 19; }
  };

  MockFunction<int(int)> mock;
  EXPECT_CALL(mock, Call).WillOnce(DoAll(InitialAction{}, FinalAction{}));
  EXPECT_EQ(19, mock.AsStdFunction()(17));
}

// DoAll should never provide rvalue references to the initial actions. If the
// mock action itself accepts an rvalue reference or a non-scalar object by
// value then the final action should receive an rvalue reference, but initial
// actions should receive only lvalue references.
TEST(DoAll, ProvidesLvalueReferencesToInitialActions) {
  struct Obj {};

  // Mock action accepts by value: the initial action should be fed a const
  // lvalue reference, and the final action an rvalue reference.
  {
    struct InitialAction {
      void operator()(Obj&) const { FAIL() << "Unexpected call"; }
      void operator()(const Obj&) const {}
      void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
      void operator()(const Obj&&) const { FAIL() << "Unexpected call"; }
    };

    MockFunction<void(Obj)> mock;
    EXPECT_CALL(mock, Call)
        .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}))
        .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));

    mock.AsStdFunction()(Obj{});
    mock.AsStdFunction()(Obj{});
  }

  // Mock action accepts by const lvalue reference: both actions should receive
  // a const lvalue reference.
  {
    struct InitialAction {
      void operator()(Obj&) const { FAIL() << "Unexpected call"; }
      void operator()(const Obj&) const {}
      void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
      void operator()(const Obj&&) const { FAIL() << "Unexpected call"; }
    };

    MockFunction<void(const Obj&)> mock;
    EXPECT_CALL(mock, Call)
        .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {}))
        .WillRepeatedly(
            DoAll(InitialAction{}, InitialAction{}, [](const Obj&) {}));

    mock.AsStdFunction()(Obj{});
    mock.AsStdFunction()(Obj{});
  }

  // Mock action accepts by non-const lvalue reference: both actions should get
  // a non-const lvalue reference if they want them.
  {
    struct InitialAction {
      void operator()(Obj&) const {}
      void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
    };

    MockFunction<void(Obj&)> mock;
    EXPECT_CALL(mock, Call)
        .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}))
        .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}));

    Obj obj;
    mock.AsStdFunction()(obj);
    mock.AsStdFunction()(obj);
  }

  // Mock action accepts by rvalue reference: the initial actions should receive
  // a non-const lvalue reference if it wants it, and the final action an rvalue
  // reference.
  {
    struct InitialAction {
      void operator()(Obj&) const {}
      void operator()(Obj&&) const { FAIL() << "Unexpected call"; }
    };

    MockFunction<void(Obj &&)> mock;
    EXPECT_CALL(mock, Call)
        .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}))
        .WillRepeatedly(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));

    mock.AsStdFunction()(Obj{});
    mock.AsStdFunction()(Obj{});
  }

  // &&-qualified initial actions should also be allowed with WillOnce.
  {
    struct InitialAction {
      void operator()(Obj&) && {}
    };

    MockFunction<void(Obj&)> mock;
    EXPECT_CALL(mock, Call)
        .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&) {}));

    Obj obj;
    mock.AsStdFunction()(obj);
  }

  {
    struct InitialAction {
      void operator()(Obj&) && {}
    };

    MockFunction<void(Obj &&)> mock;
    EXPECT_CALL(mock, Call)
        .WillOnce(DoAll(InitialAction{}, InitialAction{}, [](Obj&&) {}));

    mock.AsStdFunction()(Obj{});
  }
}

// DoAll should support being used with type-erased Action objects, both through
// WillOnce and WillRepeatedly.
TEST(DoAll, SupportsTypeErasedActions) {
  // With only type-erased actions.
  const Action<void()> initial_action = [] {};
  const Action<int()> final_action = [] { return 17; };

  MockFunction<int()> mock;
  EXPECT_CALL(mock, Call)
      .WillOnce(DoAll(initial_action, initial_action, final_action))
      .WillRepeatedly(DoAll(initial_action, initial_action, final_action));

  EXPECT_EQ(17, mock.AsStdFunction()());

  // With &&-qualified and move-only final action.
  {
    struct FinalAction {
      FinalAction() = default;
      FinalAction(FinalAction&&) = default;

      int operator()() && { return 17; }
    };

    EXPECT_CALL(mock, Call)
        .WillOnce(DoAll(initial_action, initial_action, FinalAction{}));

    EXPECT_EQ(17, mock.AsStdFunction()());
  }
}

// Tests using WithArgs and with an action that takes 1 argument.
TEST(WithArgsTest, OneArg) {
  Action<bool(double x, int n)> a = WithArgs<1>(Invoke(Unary));  // NOLINT
  EXPECT_TRUE(a.Perform(std::make_tuple(1.5, -1)));
  EXPECT_FALSE(a.Perform(std::make_tuple(1.5, 1)));
}

// Tests using WithArgs with an action that takes 2 arguments.
TEST(WithArgsTest, TwoArgs) {
  Action<const char*(const char* s, double x, short n)> a =  // NOLINT
      WithArgs<0, 2>(Invoke(Binary));
  const char s[] = "Hello";
  EXPECT_EQ(s + 2, a.Perform(std::make_tuple(CharPtr(s), 0.5, Short(2))));
}

struct ConcatAll {
  std::string operator()() const { return {}; }
  template <typename... I>
  std::string operator()(const char* a, I... i) const {
    return a + ConcatAll()(i...);
  }
};

// Tests using WithArgs with an action that takes 10 arguments.
TEST(WithArgsTest, TenArgs) {
  Action<std::string(const char*, const char*, const char*, const char*)> a =
      WithArgs<0, 1, 2, 3, 2, 1, 0, 1, 2, 3>(Invoke(ConcatAll{}));
  EXPECT_EQ("0123210123",
            a.Perform(std::make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
                                      CharPtr("3"))));
}

// Tests using WithArgs with an action that is not Invoke().
class SubtractAction : public ActionInterface<int(int, int)> {
 public:
  int Perform(const std::tuple<int, int>& args) override {
    return std::get<0>(args) - std::get<1>(args);
  }
};

TEST(WithArgsTest, NonInvokeAction) {
  Action<int(const std::string&, int, int)> a =
      WithArgs<2, 1>(MakeAction(new SubtractAction));
  std::tuple<std::string, int, int> dummy =
      std::make_tuple(std::string("hi"), 2, 10);
  EXPECT_EQ(8, a.Perform(dummy));
}

// Tests using WithArgs to pass all original arguments in the original order.
TEST(WithArgsTest, Identity) {
  Action<int(int x, char y, short z)> a =  // NOLINT
      WithArgs<0, 1, 2>(Invoke(Ternary));
  EXPECT_EQ(123, a.Perform(std::make_tuple(100, Char(20), Short(3))));
}

// Tests using WithArgs with repeated arguments.
TEST(WithArgsTest, RepeatedArguments) {
  Action<int(bool, int m, int n)> a =  // NOLINT
      WithArgs<1, 1, 1, 1>(Invoke(SumOf4));
  EXPECT_EQ(4, a.Perform(std::make_tuple(false, 1, 10)));
}

// Tests using WithArgs with reversed argument order.
TEST(WithArgsTest, ReversedArgumentOrder) {
  Action<const char*(short n, const char* input)> a =  // NOLINT
      WithArgs<1, 0>(Invoke(Binary));
  const char s[] = "Hello";
  EXPECT_EQ(s + 2, a.Perform(std::make_tuple(Short(2), CharPtr(s))));
}

// Tests using WithArgs with compatible, but not identical, argument types.
TEST(WithArgsTest, ArgsOfCompatibleTypes) {
  Action<long(short x, char y, double z, char c)> a =  // NOLINT
      WithArgs<0, 1, 3>(Invoke(Ternary));
  EXPECT_EQ(123,
            a.Perform(std::make_tuple(Short(100), Char(20), 5.6, Char(3))));
}

// Tests using WithArgs with an action that returns void.
TEST(WithArgsTest, VoidAction) {
  Action<void(double x, char c, int n)> a = WithArgs<2, 1>(Invoke(VoidBinary));
  g_done = false;
  a.Perform(std::make_tuple(1.5, 'a', 3));
  EXPECT_TRUE(g_done);
}

TEST(WithArgsTest, ReturnReference) {
  Action<int&(int&, void*)> aa = WithArgs<0>([](int& a) -> int& { return a; });
  int i = 0;
  const int& res = aa.Perform(std::forward_as_tuple(i, nullptr));
  EXPECT_EQ(&i, &res);
}

TEST(WithArgsTest, InnerActionWithConversion) {
  Action<Derived*()> inner = [] { return nullptr; };

  MockFunction<Base*(double)> mock;
  EXPECT_CALL(mock, Call)
      .WillOnce(WithoutArgs(inner))
      .WillRepeatedly(WithoutArgs(inner));

  EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1));
  EXPECT_EQ(nullptr, mock.AsStdFunction()(1.1));
}

// It should be possible to use an &&-qualified inner action as long as the
// whole shebang is used as an rvalue with WillOnce.
TEST(WithArgsTest, RefQualifiedInnerAction) {
  struct SomeAction {
    int operator()(const int arg) && {
      EXPECT_EQ(17, arg);
      return 19;
    }
  };

  MockFunction<int(int, int)> mock;
  EXPECT_CALL(mock, Call).WillOnce(WithArg<1>(SomeAction{}));
  EXPECT_EQ(19, mock.AsStdFunction()(0, 17));
}

#if !GTEST_OS_WINDOWS_MOBILE

class SetErrnoAndReturnTest : public testing::Test {
 protected:
  void SetUp() override { errno = 0; }
  void TearDown() override { errno = 0; }
};

TEST_F(SetErrnoAndReturnTest, Int) {
  Action<int(void)> a = SetErrnoAndReturn(ENOTTY, -5);
  EXPECT_EQ(-5, a.Perform(std::make_tuple()));
  EXPECT_EQ(ENOTTY, errno);
}

TEST_F(SetErrnoAndReturnTest, Ptr) {
  int x;
  Action<int*(void)> a = SetErrnoAndReturn(ENOTTY, &x);
  EXPECT_EQ(&x, a.Perform(std::make_tuple()));
  EXPECT_EQ(ENOTTY, errno);
}

TEST_F(SetErrnoAndReturnTest, CompatibleTypes) {
  Action<double()> a = SetErrnoAndReturn(EINVAL, 5);
  EXPECT_DOUBLE_EQ(5.0, a.Perform(std::make_tuple()));
  EXPECT_EQ(EINVAL, errno);
}

#endif  // !GTEST_OS_WINDOWS_MOBILE

// Tests ByRef().

// Tests that the result of ByRef() is copyable.
TEST(ByRefTest, IsCopyable) {
  const std::string s1 = "Hi";
  const std::string s2 = "Hello";

  auto ref_wrapper = ByRef(s1);
  const std::string& r1 = ref_wrapper;
  EXPECT_EQ(&s1, &r1);

  // Assigns a new value to ref_wrapper.
  ref_wrapper = ByRef(s2);
  const std::string& r2 = ref_wrapper;
  EXPECT_EQ(&s2, &r2);

  auto ref_wrapper1 = ByRef(s1);
  // Copies ref_wrapper1 to ref_wrapper.
  ref_wrapper = ref_wrapper1;
  const std::string& r3 = ref_wrapper;
  EXPECT_EQ(&s1, &r3);
}

// Tests using ByRef() on a const value.
TEST(ByRefTest, ConstValue) {
  const int n = 0;
  // int& ref = ByRef(n);  // This shouldn't compile - we have a
  // negative compilation test to catch it.
  const int& const_ref = ByRef(n);
  EXPECT_EQ(&n, &const_ref);
}

// Tests using ByRef() on a non-const value.
TEST(ByRefTest, NonConstValue) {
  int n = 0;

  // ByRef(n) can be used as either an int&,
  int& ref = ByRef(n);
  EXPECT_EQ(&n, &ref);

  // or a const int&.
  const int& const_ref = ByRef(n);
  EXPECT_EQ(&n, &const_ref);
}

// Tests explicitly specifying the type when using ByRef().
TEST(ByRefTest, ExplicitType) {
  int n = 0;
  const int& r1 = ByRef<const int>(n);
  EXPECT_EQ(&n, &r1);

  // ByRef<char>(n);  // This shouldn't compile - we have a negative
  // compilation test to catch it.

  Derived d;
  Derived& r2 = ByRef<Derived>(d);
  EXPECT_EQ(&d, &r2);

  const Derived& r3 = ByRef<const Derived>(d);
  EXPECT_EQ(&d, &r3);

  Base& r4 = ByRef<Base>(d);
  EXPECT_EQ(&d, &r4);

  const Base& r5 = ByRef<const Base>(d);
  EXPECT_EQ(&d, &r5);

  // The following shouldn't compile - we have a negative compilation
  // test for it.
  //
  // Base b;
  // ByRef<Derived>(b);
}

// Tests that Google Mock prints expression ByRef(x) as a reference to x.
TEST(ByRefTest, PrintsCorrectly) {
  int n = 42;
  ::std::stringstream expected, actual;
  testing::internal::UniversalPrinter<const int&>::Print(n, &expected);
  testing::internal::UniversalPrint(ByRef(n), &actual);
  EXPECT_EQ(expected.str(), actual.str());
}

struct UnaryConstructorClass {
  explicit UnaryConstructorClass(int v) : value(v) {}
  int value;
};

// Tests using ReturnNew() with a unary constructor.
TEST(ReturnNewTest, Unary) {
  Action<UnaryConstructorClass*()> a = ReturnNew<UnaryConstructorClass>(4000);
  UnaryConstructorClass* c = a.Perform(std::make_tuple());
  EXPECT_EQ(4000, c->value);
  delete c;
}

TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) {
  Action<UnaryConstructorClass*(bool, int)> a =
      ReturnNew<UnaryConstructorClass>(4000);
  UnaryConstructorClass* c = a.Perform(std::make_tuple(false, 5));
  EXPECT_EQ(4000, c->value);
  delete c;
}

TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) {
  Action<const UnaryConstructorClass*()> a =
      ReturnNew<UnaryConstructorClass>(4000);
  const UnaryConstructorClass* c = a.Perform(std::make_tuple());
  EXPECT_EQ(4000, c->value);
  delete c;
}

class TenArgConstructorClass {
 public:
  TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, int a6, int a7,
                         int a8, int a9, int a10)
      : value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) {}
  int value_;
};

// Tests using ReturnNew() with a 10-argument constructor.
TEST(ReturnNewTest, ConstructorThatTakes10Arguments) {
  Action<TenArgConstructorClass*()> a = ReturnNew<TenArgConstructorClass>(
      1000000000, 200000000, 30000000, 4000000, 500000, 60000, 7000, 800, 90,
      0);
  TenArgConstructorClass* c = a.Perform(std::make_tuple());
  EXPECT_EQ(1234567890, c->value_);
  delete c;
}

std::unique_ptr<int> UniquePtrSource() {
  return std::unique_ptr<int>(new int(19));
}

std::vector<std::unique_ptr<int>> VectorUniquePtrSource() {
  std::vector<std::unique_ptr<int>> out;
  out.emplace_back(new int(7));
  return out;
}

TEST(MockMethodTest, CanReturnMoveOnlyValue_Return) {
  MockClass mock;
  std::unique_ptr<int> i(new int(19));
  EXPECT_CALL(mock, MakeUnique()).WillOnce(Return(ByMove(std::move(i))));
  EXPECT_CALL(mock, MakeVectorUnique())
      .WillOnce(Return(ByMove(VectorUniquePtrSource())));
  Derived* d = new Derived;
  EXPECT_CALL(mock, MakeUniqueBase())
      .WillOnce(Return(ByMove(std::unique_ptr<Derived>(d))));

  std::unique_ptr<int> result1 = mock.MakeUnique();
  EXPECT_EQ(19, *result1);

  std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
  EXPECT_EQ(1u, vresult.size());
  EXPECT_NE(nullptr, vresult[0]);
  EXPECT_EQ(7, *vresult[0]);

  std::unique_ptr<Base> result2 = mock.MakeUniqueBase();
  EXPECT_EQ(d, result2.get());
}

TEST(MockMethodTest, CanReturnMoveOnlyValue_DoAllReturn) {
  testing::MockFunction<void()> mock_function;
  MockClass mock;
  std::unique_ptr<int> i(new int(19));
  EXPECT_CALL(mock_function, Call());
  EXPECT_CALL(mock, MakeUnique())
      .WillOnce(DoAll(InvokeWithoutArgs(&mock_function,
                                        &testing::MockFunction<void()>::Call),
                      Return(ByMove(std::move(i)))));

  std::unique_ptr<int> result1 = mock.MakeUnique();
  EXPECT_EQ(19, *result1);
}

TEST(MockMethodTest, CanReturnMoveOnlyValue_Invoke) {
  MockClass mock;

  // Check default value
  DefaultValue<std::unique_ptr<int>>::SetFactory(
      [] { return std::unique_ptr<int>(new int(42)); });
  EXPECT_EQ(42, *mock.MakeUnique());

  EXPECT_CALL(mock, MakeUnique()).WillRepeatedly(Invoke(UniquePtrSource));
  EXPECT_CALL(mock, MakeVectorUnique())
      .WillRepeatedly(Invoke(VectorUniquePtrSource));
  std::unique_ptr<int> result1 = mock.MakeUnique();
  EXPECT_EQ(19, *result1);
  std::unique_ptr<int> result2 = mock.MakeUnique();
  EXPECT_EQ(19, *result2);
  EXPECT_NE(result1, result2);

  std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
  EXPECT_EQ(1u, vresult.size());
  EXPECT_NE(nullptr, vresult[0]);
  EXPECT_EQ(7, *vresult[0]);
}

TEST(MockMethodTest, CanTakeMoveOnlyValue) {
  MockClass mock;
  auto make = [](int i) { return std::unique_ptr<int>(new int(i)); };

  EXPECT_CALL(mock, TakeUnique(_)).WillRepeatedly([](std::unique_ptr<int> i) {
    return *i;
  });
  // DoAll() does not compile, since it would move from its arguments twice.
  // EXPECT_CALL(mock, TakeUnique(_, _))
  //     .WillRepeatedly(DoAll(Invoke([](std::unique_ptr<int> j) {}),
  //     Return(1)));
  EXPECT_CALL(mock, TakeUnique(testing::Pointee(7)))
      .WillOnce(Return(-7))
      .RetiresOnSaturation();
  EXPECT_CALL(mock, TakeUnique(testing::IsNull()))
      .WillOnce(Return(-1))
      .RetiresOnSaturation();

  EXPECT_EQ(5, mock.TakeUnique(make(5)));
  EXPECT_EQ(-7, mock.TakeUnique(make(7)));
  EXPECT_EQ(7, mock.TakeUnique(make(7)));
  EXPECT_EQ(7, mock.TakeUnique(make(7)));
  EXPECT_EQ(-1, mock.TakeUnique({}));

  // Some arguments are moved, some passed by reference.
  auto lvalue = make(6);
  EXPECT_CALL(mock, TakeUnique(_, _))
      .WillOnce([](const std::unique_ptr<int>& i, std::unique_ptr<int> j) {
        return *i * *j;
      });
  EXPECT_EQ(42, mock.TakeUnique(lvalue, make(7)));

  // The unique_ptr can be saved by the action.
  std::unique_ptr<int> saved;
  EXPECT_CALL(mock, TakeUnique(_)).WillOnce([&saved](std::unique_ptr<int> i) {
    saved = std::move(i);
    return 0;
  });
  EXPECT_EQ(0, mock.TakeUnique(make(42)));
  EXPECT_EQ(42, *saved);
}

// It should be possible to use callables with an &&-qualified call operator
// with WillOnce, since they will be called only once. This allows actions to
// contain and manipulate move-only types.
TEST(MockMethodTest, ActionHasRvalueRefQualifiedCallOperator) {
  struct Return17 {
    int operator()() && { return 17; }
  };

  // Action is directly compatible with mocked function type.
  {
    MockFunction<int()> mock;
    EXPECT_CALL(mock, Call).WillOnce(Return17());

    EXPECT_EQ(17, mock.AsStdFunction()());
  }

  // Action doesn't want mocked function arguments.
  {
    MockFunction<int(int)> mock;
    EXPECT_CALL(mock, Call).WillOnce(Return17());

    EXPECT_EQ(17, mock.AsStdFunction()(0));
  }
}

// Edge case: if an action has both a const-qualified and an &&-qualified call
// operator, there should be no "ambiguous call" errors. The &&-qualified
// operator should be used by WillOnce (since it doesn't need to retain the
// action beyond one call), and the const-qualified one by WillRepeatedly.
TEST(MockMethodTest, ActionHasMultipleCallOperators) {
  struct ReturnInt {
    int operator()() && { return 17; }
    int operator()() const& { return 19; }
  };

  // Directly compatible with mocked function type.
  {
    MockFunction<int()> mock;
    EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());

    EXPECT_EQ(17, mock.AsStdFunction()());
    EXPECT_EQ(19, mock.AsStdFunction()());
    EXPECT_EQ(19, mock.AsStdFunction()());
  }

  // Ignores function arguments.
  {
    MockFunction<int(int)> mock;
    EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());

    EXPECT_EQ(17, mock.AsStdFunction()(0));
    EXPECT_EQ(19, mock.AsStdFunction()(0));
    EXPECT_EQ(19, mock.AsStdFunction()(0));
  }
}

// WillOnce should have no problem coping with a move-only action, whether it is
// &&-qualified or not.
TEST(MockMethodTest, MoveOnlyAction) {
  // &&-qualified
  {
    struct Return17 {
      Return17() = default;
      Return17(Return17&&) = default;

      Return17(const Return17&) = delete;
      Return17 operator=(const Return17&) = delete;

      int operator()() && { return 17; }
    };

    MockFunction<int()> mock;
    EXPECT_CALL(mock, Call).WillOnce(Return17());
    EXPECT_EQ(17, mock.AsStdFunction()());
  }

  // Not &&-qualified
  {
    struct Return17 {
      Return17() = default;
      Return17(Return17&&) = default;

      Return17(const Return17&) = delete;
      Return17 operator=(const Return17&) = delete;

      int operator()() const { return 17; }
    };

    MockFunction<int()> mock;
    EXPECT_CALL(mock, Call).WillOnce(Return17());
    EXPECT_EQ(17, mock.AsStdFunction()());
  }
}

// It should be possible to use an action that returns a value with a mock
// function that doesn't, both through WillOnce and WillRepeatedly.
TEST(MockMethodTest, ActionReturnsIgnoredValue) {
  struct ReturnInt {
    int operator()() const { return 0; }
  };

  MockFunction<void()> mock;
  EXPECT_CALL(mock, Call).WillOnce(ReturnInt()).WillRepeatedly(ReturnInt());

  mock.AsStdFunction()();
  mock.AsStdFunction()();
}

// Despite the fanciness around move-only actions and so on, it should still be
// possible to hand an lvalue reference to a copyable action to WillOnce.
TEST(MockMethodTest, WillOnceCanAcceptLvalueReference) {
  MockFunction<int()> mock;

  const auto action = [] { return 17; };
  EXPECT_CALL(mock, Call).WillOnce(action);

  EXPECT_EQ(17, mock.AsStdFunction()());
}

// A callable that doesn't use SFINAE to restrict its call operator's overload
// set, but is still picky about which arguments it will accept.
struct StaticAssertSingleArgument {
  template <typename... Args>
  static constexpr bool CheckArgs() {
    static_assert(sizeof...(Args) == 1, "");
    return true;
  }

  template <typename... Args, bool = CheckArgs<Args...>()>
  int operator()(Args...) const {
    return 17;
  }
};

// WillOnce and WillRepeatedly should both work fine with naïve implementations
// of actions that don't use SFINAE to limit the overload set for their call
// operator. If they are compatible with the actual mocked signature, we
// shouldn't probe them with no arguments and trip a static_assert.
TEST(MockMethodTest, ActionSwallowsAllArguments) {
  MockFunction<int(int)> mock;
  EXPECT_CALL(mock, Call)
      .WillOnce(StaticAssertSingleArgument{})
      .WillRepeatedly(StaticAssertSingleArgument{});

  EXPECT_EQ(17, mock.AsStdFunction()(0));
  EXPECT_EQ(17, mock.AsStdFunction()(0));
}

struct ActionWithTemplatedConversionOperators {
  template <typename... Args>
  operator OnceAction<int(Args...)>() && {  // NOLINT
    return [] { return 17; };
  }

  template <typename... Args>
  operator Action<int(Args...)>() const {  // NOLINT
    return [] { return 19; };
  }
};

// It should be fine to hand both WillOnce and WillRepeatedly a function that
// defines templated conversion operators to OnceAction and Action. WillOnce
// should prefer the OnceAction version.
TEST(MockMethodTest, ActionHasTemplatedConversionOperators) {
  MockFunction<int()> mock;
  EXPECT_CALL(mock, Call)
      .WillOnce(ActionWithTemplatedConversionOperators{})
      .WillRepeatedly(ActionWithTemplatedConversionOperators{});

  EXPECT_EQ(17, mock.AsStdFunction()());
  EXPECT_EQ(19, mock.AsStdFunction()());
}

// Tests for std::function based action.

int Add(int val, int& ref, int* ptr) {  // NOLINT
  int result = val + ref + *ptr;
  ref = 42;
  *ptr = 43;
  return result;
}

int Deref(std::unique_ptr<int> ptr) { return *ptr; }

struct Double {
  template <typename T>
  T operator()(T t) {
    return 2 * t;
  }
};

std::unique_ptr<int> UniqueInt(int i) {
  return std::unique_ptr<int>(new int(i));
}

TEST(FunctorActionTest, ActionFromFunction) {
  Action<int(int, int&, int*)> a = &Add;
  int x = 1, y = 2, z = 3;
  EXPECT_EQ(6, a.Perform(std::forward_as_tuple(x, y, &z)));
  EXPECT_EQ(42, y);
  EXPECT_EQ(43, z);

  Action<int(std::unique_ptr<int>)> a1 = &Deref;
  EXPECT_EQ(7, a1.Perform(std::make_tuple(UniqueInt(7))));
}

TEST(FunctorActionTest, ActionFromLambda) {
  Action<int(bool, int)> a1 = [](bool b, int i) { return b ? i : 0; };
  EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
  EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 5)));

  std::unique_ptr<int> saved;
  Action<void(std::unique_ptr<int>)> a2 = [&saved](std::unique_ptr<int> p) {
    saved = std::move(p);
  };
  a2.Perform(std::make_tuple(UniqueInt(5)));
  EXPECT_EQ(5, *saved);
}

TEST(FunctorActionTest, PolymorphicFunctor) {
  Action<int(int)> ai = Double();
  EXPECT_EQ(2, ai.Perform(std::make_tuple(1)));
  Action<double(double)> ad = Double();  // Double? Double double!
  EXPECT_EQ(3.0, ad.Perform(std::make_tuple(1.5)));
}

TEST(FunctorActionTest, TypeConversion) {
  // Numeric promotions are allowed.
  const Action<bool(int)> a1 = [](int i) { return i > 1; };
  const Action<int(bool)> a2 = Action<int(bool)>(a1);
  EXPECT_EQ(1, a1.Perform(std::make_tuple(42)));
  EXPECT_EQ(0, a2.Perform(std::make_tuple(42)));

  // Implicit constructors are allowed.
  const Action<bool(std::string)> s1 = [](std::string s) { return !s.empty(); };
  const Action<int(const char*)> s2 = Action<int(const char*)>(s1);
  EXPECT_EQ(0, s2.Perform(std::make_tuple("")));
  EXPECT_EQ(1, s2.Perform(std::make_tuple("hello")));

  // Also between the lambda and the action itself.
  const Action<bool(std::string)> x1 = [](Unused) { return 42; };
  const Action<bool(std::string)> x2 = [] { return 42; };
  EXPECT_TRUE(x1.Perform(std::make_tuple("hello")));
  EXPECT_TRUE(x2.Perform(std::make_tuple("hello")));

  // Ensure decay occurs where required.
  std::function<int()> f = [] { return 7; };
  Action<int(int)> d = f;
  f = nullptr;
  EXPECT_EQ(7, d.Perform(std::make_tuple(1)));

  // Ensure creation of an empty action succeeds.
  Action<void(int)>(nullptr);
}

TEST(FunctorActionTest, UnusedArguments) {
  // Verify that users can ignore uninteresting arguments.
  Action<int(int, double y, double z)> a = [](int i, Unused, Unused) {
    return 2 * i;
  };
  std::tuple<int, double, double> dummy = std::make_tuple(3, 7.3, 9.44);
  EXPECT_EQ(6, a.Perform(dummy));
}

// Test that basic built-in actions work with move-only arguments.
TEST(MoveOnlyArgumentsTest, ReturningActions) {
  Action<int(std::unique_ptr<int>)> a = Return(1);
  EXPECT_EQ(1, a.Perform(std::make_tuple(nullptr)));

  a = testing::WithoutArgs([]() { return 7; });
  EXPECT_EQ(7, a.Perform(std::make_tuple(nullptr)));

  Action<void(std::unique_ptr<int>, int*)> a2 = testing::SetArgPointee<1>(3);
  int x = 0;
  a2.Perform(std::make_tuple(nullptr, &x));
  EXPECT_EQ(x, 3);
}

ACTION(ReturnArity) { return std::tuple_size<args_type>::value; }

TEST(ActionMacro, LargeArity) {
  EXPECT_EQ(
      1, testing::Action<int(int)>(ReturnArity()).Perform(std::make_tuple(0)));
  EXPECT_EQ(
      10,
      testing::Action<int(int, int, int, int, int, int, int, int, int, int)>(
          ReturnArity())
          .Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)));
  EXPECT_EQ(
      20,
      testing::Action<int(int, int, int, int, int, int, int, int, int, int, int,
                          int, int, int, int, int, int, int, int, int)>(
          ReturnArity())
          .Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
                                   14, 15, 16, 17, 18, 19)));
}

}  // namespace
}  // namespace testing

output

Text Only
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
重新生成开始于 0:27...
1>------ 已启动全部重新生成: 项目: ZERO_CHECK, 配置: Debug x64 ------
1>1>Checking Build System
2>------ 已启动全部重新生成: 项目: gtest, 配置: Debug x64 ------
3>------ 已启动全部重新生成: 项目: gmock_main, 配置: Debug x64 ------
4>------ 已启动全部重新生成: 项目: gmock, 配置: Debug x64 ------
5>------ 已跳过全部重新生成: 项目: RUN_TESTS, 配置: Debug x64 ------
5>没有为此解决方案配置选中要生成的项目 
2>Building Custom Rule D:/work/modern_cmake_work/ModernCMake/codes/google/googlemock/samples/02tmp/build/_deps/googletest-src/googletest/CMakeLists.txt
2>gtest-all.cc
3>Building Custom Rule D:/work/modern_cmake_work/ModernCMake/codes/google/googlemock/samples/02tmp/build/_deps/googletest-src/googlemock/CMakeLists.txt
4>Building Custom Rule D:/work/modern_cmake_work/ModernCMake/codes/google/googlemock/samples/02tmp/build/_deps/googletest-src/googlemock/CMakeLists.txt
3>gtest-all.cc
4>gtest-all.cc
3>gmock-all.cc
4>gmock-all.cc
2>gtest.vcxproj -> D:\work\modern_cmake_work\ModernCMake\codes\google\googlemock\samples\02tmp\build\lib\Debug\gtest.lib
6>------ 已启动全部重新生成: 项目: gtest_main, 配置: Debug x64 ------
6>Building Custom Rule D:/work/modern_cmake_work/ModernCMake/codes/google/googlemock/samples/02tmp/build/_deps/googletest-src/googletest/CMakeLists.txt
6>gtest_main.cc
3>gmock_main.cc
4>正在生成代码...
6>gtest_main.vcxproj -> D:\work\modern_cmake_work\ModernCMake\codes\google\googlemock\samples\02tmp\build\lib\Debug\gtest_main.lib
4>gmock.vcxproj -> D:\work\modern_cmake_work\ModernCMake\codes\google\googlemock\samples\02tmp\build\lib\Debug\gmock.lib
7>------ 已启动全部重新生成: 项目: testprj, 配置: Debug x64 ------
7>Building Custom Rule D:/work/modern_cmake_work/ModernCMake/codes/google/googlemock/samples/02tmp/CMakeLists.txt
3>正在生成代码...
7>gmock-actions_test.cc
3>gmock_main.vcxproj -> D:\work\modern_cmake_work\ModernCMake\codes\google\googlemock\samples\02tmp\build\lib\Debug\gmock_main.lib
7>D:\work\modern_cmake_work\ModernCMake\codes\google\googlemock\samples\02tmp\gmock-actions_test.cc(1,1): error C1128: 节数超过对象文件格式限制: 请使用 /bigobj 进行编译
7>已完成生成项目“testprj.vcxproj”的操作 - 失败。
8>------ 已启动全部重新生成: 项目: ALL_BUILD, 配置: Debug x64 ------
8>Building Custom Rule D:/work/modern_cmake_work/ModernCMake/codes/google/googlemock/samples/02tmp/CMakeLists.txt
9>------ 已跳过全部重新生成: 项目: INSTALL, 配置: Debug x64 ------
9>没有为此解决方案配置选中要生成的项目 
========== 全部重新生成: 6 成功,1 失败,2 已跳过 ==========
========== 重新生成 于 0:27 完成,耗时 11.801 秒 ==========