LaTeX
LaTeX is a high-quality typesetting system used to create professional-looking documents, such as academic papers, books, and presentations. LaTeX source code is a markup language similar to programming languages that you can use to indicate the layout, fonts, graphics, mathematical symbols, and more in your document.
Here are some useful links related to LaTeX:
LaTeX website
Online LaTeX editors
Common symbols
Binary operations
Input:
+ - \times {\div} \pm \mp \triangleleft \triangleright \cdot \setminus \star \ast \cup \cap \sqcup
Output:
Input:
\sqcap \vee \wedge \circ \bullet \oplus \ominus \odot \oslash \otimes \bigcirc \diamond \uplus \bigtriangleup \bigtriangledown
Output:
Input:
\lhd \rhd \unlhd \unrhd \amalg \wr \dagger \ddagger
Output:
Binary relations
Input:
< > = \le \ge \equiv \ll \gg \doteq \prec \succ \sim \preceq \succeq \simeq
Output:
Input:
\approx \subset \supset \subseteq \supseteq \sqsubset \sqsupset \sqsubseteq \sqsupseteq \cong \Join \bowtie \propto \in \ni
Output:
Input:
\vdash \dashv \models \mid \parallel \perp \smile \frown \asymp : \notin \ne
Output:
Arrows
Input:
\gets \to \longleftarrow \longrightarrow \uparrow \downarrow \updownarrow \leftrightarrow
\Uparrow \Downarrow \Updownarrow \longleftrightarrow \Leftarrow \Longleftarrow \Rightarrow
Output:
Input:
\Longrightarrow \Leftrightarrow \Longleftrightarrow \mapsto \longmapsto \nearrow \searrow
\swarrow \nwarrow \hookleftarrow \hookrightarrow \rightleftharpoons \iff
Output:
Input:
- ::
leftharpoonup rightharpoonup leftharpoondown rightharpoondown
Output:
Others
Input:
\because \therefore \dots \cdots \vdots \ddots \forall \exists \nexists
\Finv \neg \prime \emptyset \infty \nabla
Output:
Input:
\triangle \Box \Diamond \bot \top \angle \measuredangle \sphericalangle \surd \diamondsuit
\heartsuit \clubsuit \spadesuit \flat \natural \sharp
Output:
Greek alphabet
Lowercase
Input:
\alpha \beta \gamma \delta \epsilon \varepsilon \zeta \eta \theta \vartheta \iota \kappa \lambda \mu
Output:
Input:
\nu \xi o \pi \varpi \rho \varrho \sigma \varsigma \tau \upsilon \phi \varphi \chi \psi \omega
Output:
Uppercase
Input:
\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega
Output:
Others
Input:
\hbar \imath \jmath \ell \Re \Im \aleph \beth \gimel \daleth \wp \mho \backepsilon \partial
Output:
Input:
\eth \Bbbk \complement \circledS \S \mathbb{a} \mathfrak{a} \mathcal{a} \mathrm {a} \mathrm{def}
Output:
Fractions & Derivative
Fractions
Input:
\frac{a}{b} \tfrac{a}{b} \mathrm{d}t \frac{\mathrm{d} y}{\mathrm{d} x} \partial t
\frac{\partial y}{\partial x} \nabla\psi
\frac{\partial^2}{\partial x_1\partial x_2}y
Output:
Input:
\cfrac{1}{a + \cfrac{7}{b + \cfrac{2}{9}}} =c
Output:
Input:
\begin{equation}
x = a_0 + \cfrac{1}{a_1
+ \cfrac{1}{a_2
+ \cfrac{1}{a_3 + \cfrac{1}{a_4} } } }
\end{equation}
Output:
Derivative
Input:
\dot{a} \ddot{a} {f}' {f}'' {f}^{(n)}
Output:
Modular arithmetic
Input:
a \bmod b a \equiv b \pmod{m} \gcd(m, n) \operatorname{lcm}(m, n)
Output:
Radicals
Input:
\sqrt{x} \sqrt[n]{x}
Output:
Superscript and Subscript
Input:
x^{a} \ x_{a} \ x_{a}^{b} \ {_{a}^{b}x} \ \sideset{_1^2}{_3^4}X_a^b
Output:
Accents and Others
Input:
\hat{a} \check{a} \grave{a} \acute{a} \tilde{a} \breve{a} \bar{a} \vec{a} \not{a}
Output:
Input:
37^{\circ} \ \widetilde{abc} \ \widehat{abc} \ \overleftarrow{abc} \ \overrightarrow{abc}
Output:
Input:
\overline{abc} \ \underline{abc} \ \overbrace{abc} \ \underbrace{abc}
Output:
Input:
\overset{x}{abc} \ \underset{x}{abc} \ \stackrel\frown{AB} \ \overline{AB} \ \overleftrightarrow{AB}
Output:
Input:
\overset{a}{\leftarrow} \ \overset{a}{\rightarrow} \ \xleftarrow[abc]{x} \ \xrightarrow[abc]{x}
Output:
Limits class
Limits
Input:
\lim{a} \ \lim_{x \to 0} \ \lim_{x \to \infty} \textstyle \ \lim_{x \to 0} \max_x{y} \min_x{y}
Output:
Logarithms and exponentials
Input:
\log_{a}{b} \ \lg_{a}{b} \ \ln_{a}{b} \ \exp a
Output:
Bounds
\min x \max y \sup t \inf s \lim u \limsup w \liminf v \dim p \ker\phi
Output:
Trigonometry class
Trigonometric functions
Input:
\sin x \cos x \tan x \cot x \sec x \csc x
Output:
Inverse trigonometric functions
Input:
\sin^{-1} x \cos^{-1} x \tan^{-1} x \cot^{-1} x \sec^{-1} x \arcsin x \arccos x
Output:
Input:
\arctan x \operatorname{arccot} x \operatorname{arcsec} x \operatorname{arccos} x
Output:
Hyperbolic functions
Input:
\sinh x \cosh x \tanh x \coth x \operatorname{sech} x \operatorname{csch} x
Output:
Inverse hyperbolic functions
Input:
\sinh^{-1} x \cosh^{-1} x \tanh^{-1} x \coth^{-1} x
\operatorname{sech}^{-1} x \operatorname{csch}^{-1}x
Output:
Integral operation
Integral
Input:
\int x \int_{a}^{b} x \int\limits_{a}^{b} x
Output:
Double integral
Input:
\iint x \iint_{a}^{b} x \iint\limits_{a}^{b} x
Output:
Triple integral
Input:
\iiint x \iiint_{a}^{b} x \iiint\limits_{a}^{b} x
Output:
Closed line or path integral
Input:
\oint x \oint_{a}^{b} x
Output:
Summation
Input:
\sum s \sum_{a}^{b} s {\textstyle \sum_{a}^{b}} s
Output:
Product and coproduct
Input:
\prod \prod_{a}^{b} {\textstyle \prod_{a}^{b}} \coprod \coprod_{a}^{b} {\textstyle \coprod_{a}^{b}}
Output:
Union and intersection
Input:
\bigcup \bigcup_{a}^{b} {\textstyle \bigcup_{a}^{b}}
\bigcap \bigcap_{a}^{b} {\textstyle \bigcap_{a}^{b}}
Output:
Disjunction and cojunction
Input:
\bigvee \bigvee_{a}^{b} {\textstyle \bigvee_{a}^{b}}
\bigwedge \bigwedge_{a}^{b} {\textstyle \bigwedge_{a}^{b}}
Output:
Brackets
Input:
\left ( a \right )
\left [ a \right ]
\left \langle a \right \rangle
\left \{ a \right \}
\left | a \right |
\left \| a \right \|
\left \lfloor a \right \rfloor
\left \lceil a \right \rceil
Output:
Input:
\binom{n}{r}
\left [ 0,1 \right )
\left \langle \psi \right |
\left | \psi \right \rangle
\left \langle \psi | \psi \right \rangle
Output:
Matrix
Input:
\begin{matrix}
1&2 &3 \\
4&5 &6
\end{matrix}
Output:
Input:
\begin{bmatrix}
1&2 &3 \\
4&5 &6
\end{bmatrix}
Output:
Input:
\begin{pmatrix}
1&2 &3 \\
4&5 &6
\end{pmatrix}
Output:
Input:
\begin{vmatrix}
1&2 &3 \\
4&5 &6
\end{vmatrix}
Output:
Input:
\begin{Vmatrix}
1&2 &3 \\
4&5 &6
\end{Vmatrix}
Output:
Input:
\begin{Bmatrix}
1&2 &3 \\
4&5 &6
\end{Bmatrix}
Output:
Input:
\left\{\begin{matrix}
1&2 &3 \\
4&5 &6
\end{matrix}\right.
Output:
Input:
\left.\begin{matrix}
1&2 &3 \\
4&5 &6
\end{matrix}\right\}
Output:
Input:
\begin{cases}
1& \text{ if } x= 2\\
3& \text{ if } x=4
\end{cases}
Output:
Input:
\begin{align*}
y&=1 \\
x&=2
\end{align*}
Output:
Formula Template
Algebra
Input:
\left(x-1\right)\left(x+3\right)
Output:
Input:
\sqrt{a^2+b^2}
Output:
Input:
\frac{a}{b}\pm \frac{c}{d}= \frac{ad \pm bc}{bd}
Output:
Input:
\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0
Output:
Input:
x ={-b \pm \sqrt{b^2-4ac}\over 2a}
Output:
Input:
\left\{\begin{matrix}
x=a + r\text{cos}\theta \\
y=b + r\text{sin}\theta
\end{matrix}\right.
Output:
Input:
\left ( \frac{a}{b}\right )^{n}= \frac{a^{n}}{b^{n}}
Output:
Input:
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
Output:
Input:
\sqrt[n]{a^{n}}=\left ( \sqrt[n]{a}\right )^{n}
Output:
Input:
y-y_{1}=k \left( x-x_{1}\right)
Output:
Input:
\begin{array}{l}
\text{For equations of the form: }x^{3}-1=0 \\
\text{let}\text{:}\omega =\frac{-1+\sqrt{3}i}{2} \\
x_{1}=1,x_{2}= \omega =\frac{-1+\sqrt{3}i}{2} \\
x_{3}= \omega ^{2}=\frac{-1-\sqrt{3}i}{2}
\end{array}
Output:
Input:
\begin{array}{l}
a\mathop{{x}}\nolimits^{{2}}+bx+c=0 \\
\Delta =\mathop{{b}}\nolimits^{{2}}-4ac \\
\mathop{{x}}\nolimits_{{1,2}}=\frac{{-b \pm
\sqrt{{\mathop{{b}}\nolimits^{{2}}-4ac}}}}{{2a}} \\
\mathop{{x}}\nolimits_{{1}}+\mathop{{x}}\nolimits_{{2}}=-\frac{{b}}{{a}} \\
\mathop{{x}}\nolimits_{{1}}\mathop{{x}}\nolimits_{{2}}=\frac{{c}}{{a}}
\end{array}
Output:
Input:
\begin{array}{l}
a\mathop{{x}}\nolimits^{{2}}+bx+c=0 \\
\Delta =\mathop{{b}}\nolimits^{{2}}-4ac \\
\left\{\begin{matrix}
\Delta \gt 0\text{ The equation has two distinct real roots} \\
\Delta = 0\text{ The equation has two equal real roots} \\
\Delta \lt 0\text{ The equation has two complex roots}
\end{matrix}\right.
\end{array}
Output:
Space
Input:
\begin{array}{l}
a\quad b \\
a\qquad b \\
a\enspace b \\
a\;b \\
a\:b \\
a\,b \\
a\!b
\end{array}
Output:
Geometry
Input:
\begin{array}{l}
\Delta A B C \\
l \perp \beta ,l \subset \alpha \Rightarrow \alpha \perp \beta \\
a \parallel c,b \parallel c \Rightarrow a \parallel b \\
P \in \alpha ,P \in \beta , \alpha \cap \beta =l \Rightarrow P \in l \\
A \in l,B \in l,A \in \alpha ,B \in \alpha \Rightarrow l \subset \alpha
\end{array}
Output:
Input:
\left.\begin{matrix}
a \perp \alpha \\
b \perp \alpha
\end{matrix}\right\}\Rightarrow a \parallel b
Output:
Input:
\left.\begin{matrix}
a \subset \beta ,b \subset \beta ,a \cap b=P \\
a \parallel \partial ,b \parallel \partial
\end{matrix}\right\}\Rightarrow \beta \parallel \alpha
Output:
Input:
\begin{array}{c}
\alpha \perp \beta , \alpha \cap \beta =l,a \subset \alpha ,a \perp l \Rightarrow a \perp \beta \\
\alpha \parallel \beta , \gamma \cap \alpha =a, \gamma \cap \beta =b \Rightarrow a \parallel b \\
a^{2}+b^{2}=c^{2}
\end{array}
Output:
Inequality
Input:
\begin{array}{c}
a > b,b > c \Rightarrow a > c \\
a > b > 0,c > d > 0 \Rightarrow ac > bd \\
a > b,c > d \Rightarrow a+c > b+d \\
\left | a-b \right | \geqslant \left | a \right | -\left | b \right | \\
\left | a \right |\leqslant b \Rightarrow -b \leqslant a \leqslant \left | b \right | \\
-\left | a \right |\leq a\leqslant \left | a \right | \\
\left | a+b \right | \leqslant \left | a \right | + \left | b \right |
\end{array}
Output:
Input:
\begin{array}{c}
a \gt b,c \gt 0 \Rightarrow ac \gt bc \\
a \gt b,c \lt 0 \Rightarrow ac \lt bc
\end{array}
Output:
Input:
\begin{array}{c}
a \gt b \gt 0,n \in N^{\ast},n \gt 1 \\
\Rightarrow a^{n}\gt b^{n}, \sqrt[n]{a}\gt \sqrt[n]{b}
\end{array}
Output:
Input:
\left( \sum_{k=1}^n a_k b_k \right)^{\!\!2}\leq
\left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
Output:
Input:
\begin{array}{c}
a,b \in R^{+} \\
\Rightarrow \frac{a+b}{{2}}\ge \sqrt{ab} \\
\left( \text{Equality holds if and only if }a=b\right)
\end{array}
Output:
Input:
\begin{array}{c}
a,b \in R \\
\Rightarrow a^{2}+b^{2}\ge 2ab \\
\left( \text{Equality holds if and only if }a=b\right)
\end{array}
Output:
Input:
\begin{array}{c}
H_{n}=\frac{n}{\sum \limits_{i=1}^{n}\frac{1}{x_{i}}}= \frac{n}{\frac{1}{x_{1}}+ \frac{1}{x_{2}}+ \cdots + \frac{1}{x_{n}}} \\
G_{n}=\sqrt[n]{\prod \limits_{i=1}^{n}x_{i}}= \sqrt[n]{x_{1}x_{2}\cdots x_{n}} \\
A_{n}=\frac{1}{n}\sum \limits_{i=1}^{n}x_{i}=\frac{x_{1}+ x_{2}+ \cdots + x_{n}}{n} \\
Q_{n}=\sqrt{\sum \limits_{i=1}^{n}x_{i}^{2}}= \sqrt{\frac{x_{1}^{2}+ x_{2}^{2}+ \cdots + x_{n}^{2}}{n}} \\
H_{n}\leq G_{n}\leq A_{n}\leq Q_{n}
\end{array}
Output:
Integral
Input:
\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{d}x}x^n=nx^{n-1} \\
\frac{\mathrm{d}}{\mathrm{d}x}\ln(x)=\frac{1}{x} \\
\frac{\mathrm{d}}{\mathrm{d}x}\cos x=-\sin x \\
\frac{\mathrm{d}}{\mathrm{d}x}\tan x=\sec^2 x \\
\int \frac{1}{x}\mathrm{d}x= \ln \left| x \right| +C \\
\int \frac{1}{1+x^{2}}\mathrm{d}x= \arctan x +C \\
f(x) = \int_{-\infty}^\infty \hat f(x)\xi\,e^{2 \pi i \xi x} \,\mathrm{d}\xi
\end{array}
Output:
Input:
\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{d}x}e^{ax}=a\,e^{ax} \\
\frac{\mathrm{d}}{\mathrm{d}x}\sin x=\cos x \\
\int k\mathrm{d}x = kx+C \\
\frac{\mathrm{d}}{\mathrm{d}x}\cot x=-\csc^2 x \\
\int \frac{1}{\sqrt{1-x^{2}}}\mathrm{d}x= \arcsin x +C \\
\int u \frac{\mathrm{d}v}{\mathrm{d}x}\,\mathrm{d}x=uv-\int \frac{\mathrm{d}u}{\mathrm{d}x}v\,\mathrm{d}x \\
\int x^{\mu}\mathrm{d}x=\frac{x^{\mu +1}}{\mu +1}+C, \left({\mu \neq -1}\right)
\end{array}
Output:
Matrix
Input:
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
Output:
Input:
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
Output:
Input:
\begin{pmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{m1} & \cdots & a_{mn}
\end{pmatrix}
Output:
Input:
O = \begin{bmatrix}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{bmatrix}
Output:
Input:
A_{m\times n}=
\begin{bmatrix}
a_{11}& a_{12}& \cdots & a_{1n} \\
a_{21}& a_{22}& \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1}& a_{m2}& \cdots & a_{mn}
\end{bmatrix}
=\left [ a_{ij}\right ]
Output:
Input:
\begin{array}{c}
A={\left[ a_{ij}\right]_{m \times n}},B={\left[ b_{ij}\right]_{n \times s}} \\
c_{ij}= \sum \limits_{k=1}^{{n}}a_{ik}b_{kj} \\
C=AB=\left[ c_{ij}\right]_{m \times s}
= \left[ \sum \limits_{k=1}^{n}a_{ik}b_{kj}\right]_{m \times s}
\end{array}
Output:
Input:
\mathbf{V}_1 \times \mathbf{V}_2 =
\begin{vmatrix}
\mathbf{i}& \mathbf{j}& \mathbf{k} \\
\frac{\partial X}{\partial u}& \frac{\partial Y}{\partial u}& 0 \\
\frac{\partial X}{\partial v}& \frac{\partial Y}{\partial v}& 0 \\
\end{vmatrix}
Output:
Input:
\begin{array}{c}
A=A^{T} \\
A=-A^{T}
\end{array}
Output:
Triangle
Input:
\begin{array}{l}
e^{i \theta} \\
\text{sin}^{2}\frac{\alpha}{2}=\frac{1- \text{cos}\alpha}{2} \\
\text{tan}\frac{\alpha}{2}=\frac{\text{sin}\alpha}{1+ \text{cos}\alpha} \\
\sin \alpha - \sin \beta =2 \cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} \\
\cos \alpha - \cos \beta =-2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} \\
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2R} \\
\sin \left ( \frac{\pi}{2}+\alpha \right ) = \cos \alpha
\end{array}
Output:
Input:
\begin{array}{l}
\left(\frac{\pi}{2}-\theta \right ) \\
\text{cos}^{2}\frac{\alpha}{2}=\frac{1+ \text{cos}\alpha}{2} \\
\sin \alpha + \sin \beta =2 \sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} \\
\cos \alpha + \cos \beta =2 \cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} \\
a^{2}=b^{2}+c^{2}-2bc\cos A \\
\sin \left ( \frac{\pi}{2}-\alpha \right ) = \cos \alpha
\end{array}
Output:
Statistics
Input:
\begin{array}{l}
C_{r}^{n} \\
\sum_{i=1}^{n}{X_i} \\
X_1, \cdots,X_n \\
\sum_{i=1}^{n}{(X_i - \overline{X})^2} \\
P(E) ={n \choose k}p^k (1-p)^{n-k} \\
\end{array}
Output:
Input:
\begin{array}{l}
\frac{n!}{r!(n-r)!} \\
\sum_{i=1}^{n}{X_i^2} \\
\frac{x-\mu}{\sigma} \\
P \left( A \right) = \lim \limits_{n \to \infty}f_{n}\left ( A \right ) \\
\end{array}
Output:
Input:
P \left( \bigcup \limits_{i=1}^{+ \infty}A_{i}\right) =
\prod \limits_{i=1}^{+ \infty}P{\left( A_{i}\right)}
Output:
Input:
P \left( \bigcup \limits_{i=1}^{n}A_{i}\right) =
\prod \limits_{i=1}^{n}P \left( A_{i}\right)
Output:
Input:
\begin{array}{c}
\forall A \in S \\
P \left( A \right) \ge 0
\end{array}
Output:
Input:
\begin{array}{c}
P \left( \emptyset \right) =0 \\
P \left( S \right) =1
\end{array}
Output:
Input:
\begin{array}{c}
S= \binom{N}{n},A_{k}=\binom{M}{k}\cdot \binom{N-M}{n-k} \\
P\left ( A_{k}\right ) = \frac{\binom{M}{k}\cdot \binom{N-M}{n-k}}{\binom{N}{n}}
\end{array}
Output:
Input:
\begin{array}{c}
P_{n}=n! \\
A_{n}^{k}=\frac{n!}{\left( n-k \left) !\right. \right.}
\end{array}
Output:
Input:
\begin{array}{c}
\text{If } P(AB) = P(A)P(B) \\
\text{then } P(A|B) = \dfrac{P(B)}{1-P(\overline{B})}
\end{array}
Output:
Sequence
Input:
\begin{array}{l}
a_{n}=a_{1}q^{n-1} \\
S_{n}=na_{1}+\frac{n \left( n-1 \right)}{{2}}d \\
\frac{1}{n \left( n+k \right)}= \frac{1}{k}\left( \frac{1}{n}-\frac{1}{n+k}\right) \\
\frac{1}{4n^{2}-1}=\frac{1}{2}\left( \frac{1}{2n-1}-\frac{1}{2n+1}\right) \\
\end{array}
Output:
Input:
\begin{array}{l}
a_{n}=a_{1}+ \left( n-1 \left) d\right. \right. \\
S_{n}=\frac{n \left( a_{1}+a_{n}\right)}{2} \\
\frac{1}{n^{2}-1}= \frac{1}{2}\left( \frac{1}{n-1}-\frac{1}{n+1}\right) \\
\frac{n+1}{n \left( n-1 \left) \cdot 2^{n}\right. \right.}=
\frac{1}{\left( n-1 \left) \cdot 2^{n-1}\right. \right.}-\frac{1}{n \cdot 2^{n}} \\
(1+x)^{n} =1 + \frac{nx}{1!} + \frac{n(n-1)x^{2}}{2!} + \cdots
\end{array}
Output:
Input:
\begin{array}{c}
\text{If}\left \{a_{n}\right \},\left \{b_{n}\right \}\text{are arithmetic progressions}, \\
\text{then}\left \{a_{n}+ b_{n}\right \}\text{is an arithmetic progression.}
\end{array}
Output:
Physics
Input:
\sum {{{ \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} }_i}} =
\frac{{d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over v} }}{{dt}} = 0
Output:
Input:
{{ \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} }_{12}} =
- {{ \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} }_{21}}
Output:
Input:
\mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} =
k \frac{{Qq}}{{{r^2}}} \hat{r}
Output:
Input:
d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over B} =
\frac{{{ \mu _0}}}{{4 \pi }} \frac{{Idl \times \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over r} }}{{{r^3}}} =
\frac{{{ \mu _0}}}{{4 \pi }} \frac{{Idl \sin \theta }}{{{r^2}}}
Output:
Input:
E = n{{ \Delta \Phi } \over {\Delta {t} }}
Output:
Input:
\oint { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over E} \cdot {d\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over l}} =
- {{d{\varphi _B}} \over {dt}}}
Output:
Input:
Q = I ^ { 2 } R \mathrm { t }
Output:
Input:
{E_k} = hv - {W_0}
Output:
Input:
\Delta {x} \Delta {p} \ge \frac{h}{{4 \pi }}
Output:
Input:
{y_0} = A \cos ( \omega {t} + { \varphi _0})
Output:
Input:
\mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} =
m \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over a} =
m \frac{{{d^2} \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over r} }}{{d{t^2}}}
Output:
Input:
{E_p} = -\frac{{GMm}}{r}
Output:
Input:
\oint_L { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over E} }
\cdot { \rm{d}} \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over l} = 0
Output:
Input:
d \vec{F}= Id \vec{l} \times \vec{B}
Output:
Input:
\mathop \Phi \nolimits_e =
\oint { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over E} \cdot {d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over S}} =
{1 \over {{\varepsilon _0}}}\sum {q} }
Output:
Input:
\oint { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over B}
\cdot {d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over l}} =
{ \mu _0}} I + { \mu _0}{I_d}
Output:
Input:
F = G{{Mm} \over {{r^2}}}
Output:
Input:
\lambda = \frac{{ \frac{{{c^2}}}{v}}}{{ \frac{{m{c^2}}}{h}}} = \frac{h}{{mv}} = \frac{h}{p}
Output:
Input:
l = {l_0} \sqrt {1 - {{( \frac{v}{c})}^2}}
Output:
Input:
y(t) = A \cos ( \frac{{2 \pi {x}}}{ \lambda } + \varphi )
Output:
Input:
\begin{array}{l}
\nabla \cdot \mathbf{E} =\cfrac{\rho}{\varepsilon _0} \\
\nabla \cdot \mathbf{B} = 0 \\
\nabla \times \mathbf{E} = -\cfrac{\partial \mathbf{B}}{\partial t } \\
\nabla \times \mathbf{B} = \mu _0\mathbf{J} + \mu _0\varepsilon_0 \cfrac{\partial \mathbf{E}}{\partial t }
\end{array}
Output:
Input:
%Unicode extension support needs to be enabled in settings for this formula.
\begin{array}{l}
{\huge \unicode{8751}}_\mathbb{S} \mathbf{E} \cdot\mathrm{d}s= \cfrac{Q}{\varepsilon_0} \\
{\huge \unicode{8751}}_\mathbb{S} \mathbf{B} \cdot\mathrm{d}s= 0 \\
{\huge \oint}_{\mathbb{L}}^{} \mathbf{E} \cdot \mathrm{d}l=-\cfrac{\mathrm{d}\Phi _{\mathbf{B}}}{\mathrm{d}t } \\
{\huge \oint}_{\mathbb{L}}^{} \mathbf{B} \cdot \mathrm{d}l=\mu_0I+ \mu_0 \varepsilon_0\cfrac{\mathrm{d}\Phi _{\mathbf{E}}}{\mathrm{d}t }
\end{array}
Output:
Input:
\begin{array}{l}
\nabla \cdot \mathbf{D} =\rho _f \\
\nabla \cdot \mathbf{B} = 0 \\
\nabla \times \mathbf{E} = -\cfrac{\partial \mathbf{B}}{\partial t } \\
\nabla \times \mathbf{H} = \mathbf{J}_f + \cfrac{\partial \mathbf{D}}{\partial t }
\end{array}
Output:
Input:
%Unicode extension support needs to be enabled in settings for this formula.
\begin{array}{l}
{\huge \unicode{8751}}_\mathbb{S} \mathbf{D} \cdot\mathrm{d}s= Q_f \\
{\huge \unicode{8751}}_\mathbb{S} \mathbf{B} \cdot\mathrm{d}s= 0 \\
{\huge \oint}_{\mathbb{L}}^{} \mathbf{E} \cdot \mathrm{d}l=-\cfrac{\mathrm{d}\Phi _{\mathbf{B}}}{\mathrm{d}t } \\
{\huge \oint}_{\mathbb{L}}^{} \mathbf{H} \cdot \mathrm{d}l=I_f+\cfrac{\mathrm{d}\Phi _{\mathbf{D}}}{\mathrm{d}t }
\end{array}
Output:
Chemical
Input:
%This formula requires enabling the mhchem extension support in the 【Settings】.
\ce{SO4^2- + Ba^2+ -> BaSO4 v}
Output:
Input:
\ce{A v B (v) -> B ^ B (^)}
Output:
Input:
\ce{Hg^2+ ->[I-] $\underset{\mathrm{red}}{\ce{HgI2}}$ ->[I-] $\underset{\mathrm{red}}{\ce{[Hg^{II}I4]^2-}}$}
Output:
Input:
\ce{Zn^2+ <=>[+ 2OH-][+ 2H+] $\underset{\text{amphoteres Hydroxid}}{\ce{Zn(OH)2 v}}$
<=>[+ 2OH-][+ 2H+] $\underset{\text{Hydroxozikat}}{\ce{[Zn(OH)4]^2-}}$}
Output:
Big
Input:
( \big( \Big( \bigg( \Bigg(
Output: