LaTeX

LaTeX is a high-quality typesetting system used to create professional-looking documents, such as academic papers, books, and presentations. LaTeX source code is a markup language similar to programming languages that you can use to indicate the layout, fonts, graphics, mathematical symbols, and more in your document.

Here are some useful links related to LaTeX:

LaTeX website

  1. LaTeX Project: official website for the LaTeX Project

  2. Overleaf: an online LaTeX editor

  3. LaTeX Wikibook: a comprehensive guide to LaTeX

  4. The Not So Short Introduction to LATEX 2ε

  5. The Not So Short Introduction to LaTeX

  6. List of LaTeX symbols

  7. latex中花体字母编写汇总

Online LaTeX editors

  1. LaTeXLive

  2. Codecogs

Common symbols

Binary operations

Input:

+ - \times  {\div} \pm \mp \triangleleft \triangleright \cdot \setminus \star \ast \cup \cap \sqcup

Output:

\[+ - \times {\div} \pm \mp \triangleleft \triangleright \cdot \setminus \star \ast \cup \cap \sqcup\]

Input:

\sqcap \vee \wedge \circ \bullet \oplus \ominus \odot \oslash \otimes \bigcirc \diamond \uplus \bigtriangleup \bigtriangledown

Output:

\[\sqcap \vee \wedge \circ \bullet \oplus \ominus \odot \oslash \otimes \bigcirc \diamond \uplus \bigtriangleup \bigtriangledown\]

Input:

\lhd \rhd \unlhd \unrhd \amalg \wr \dagger \ddagger

Output:

\[\lhd \rhd \unlhd \unrhd \amalg \wr \dagger \ddagger\]

Binary relations

Input:

< > = \le \ge \equiv \ll \gg \doteq \prec \succ \sim \preceq \succeq \simeq

Output:

\[< > = \le \ge \equiv \ll \gg \doteq \prec \succ \sim \preceq \succeq \simeq\]

Input:

\approx \subset \supset \subseteq \supseteq \sqsubset \sqsupset \sqsubseteq \sqsupseteq \cong \Join \bowtie \propto \in \ni

Output:

\[\approx \subset \supset \subseteq \supseteq \sqsubset \sqsupset \sqsubseteq \sqsupseteq \cong \Join \bowtie \propto \in \ni\]

Input:

\vdash \dashv \models \mid \parallel \perp \smile \frown \asymp : \notin \ne

Output:

\[\vdash \dashv \models \mid \parallel \perp \smile \frown \asymp : \notin \ne\]

Arrows

Input:

\gets \to \longleftarrow \longrightarrow \uparrow \downarrow \updownarrow \leftrightarrow
\Uparrow \Downarrow \Updownarrow \longleftrightarrow \Leftarrow \Longleftarrow \Rightarrow

Output:

\[\gets \to \longleftarrow \longrightarrow \uparrow \downarrow \updownarrow \leftrightarrow \Uparrow \Downarrow \Updownarrow \longleftrightarrow \Leftarrow \Longleftarrow \Rightarrow\]

Input:

\Longrightarrow \Leftrightarrow \Longleftrightarrow \mapsto \longmapsto \nearrow \searrow
\swarrow \nwarrow \hookleftarrow \hookrightarrow \rightleftharpoons \iff

Output:

\[\Longrightarrow \Leftrightarrow \Longleftrightarrow \mapsto \longmapsto \nearrow \searrow \swarrow \nwarrow \hookleftarrow \hookrightarrow \rightleftharpoons \iff\]

Input:

::

leftharpoonup rightharpoonup leftharpoondown rightharpoondown

Output:

\[\leftharpoonup \rightharpoonup \leftharpoondown \rightharpoondown\]

Others

Input:

\because \therefore \dots \cdots \vdots \ddots \forall \exists \nexists
\Finv \neg \prime \emptyset \infty \nabla

Output:

\[\because \therefore \dots \cdots \vdots \ddots \forall \exists \nexists \Finv \neg \prime \emptyset \infty \nabla\]

Input:

\triangle \Box \Diamond \bot \top \angle \measuredangle \sphericalangle \surd \diamondsuit
\heartsuit \clubsuit \spadesuit \flat \natural \sharp

Output:

\[\triangle \Box \Diamond \bot \top \angle \measuredangle \sphericalangle \surd \diamondsuit \heartsuit \clubsuit \spadesuit \flat \natural \sharp\]

Greek alphabet

Lowercase

Input:

\alpha \beta \gamma \delta \epsilon \varepsilon \zeta \eta \theta \vartheta \iota \kappa \lambda \mu

Output:

\[\alpha \beta \gamma \delta \epsilon \varepsilon \zeta \eta \theta \vartheta \iota \kappa \lambda \mu\]

Input:

\nu \xi  o \pi \varpi \rho \varrho \sigma \varsigma \tau \upsilon \phi \varphi \chi \psi \omega

Output:

\[\nu \xi o \pi \varpi \rho \varrho \sigma \varsigma \tau \upsilon \phi \varphi \chi \psi \omega\]

Uppercase

Input:

\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega

Output:

\[\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega\]

Others

Input:

\hbar \imath \jmath \ell \Re \Im \aleph \beth \gimel \daleth \wp \mho \backepsilon \partial

Output:

\[\hbar \imath \jmath \ell \Re \Im \aleph \beth \gimel \daleth \wp \mho \backepsilon \partial\]

Input:

\eth \Bbbk \complement \circledS \S \mathbb{a} \mathfrak{a} \mathcal{a} \mathrm {a} \mathrm{def}

Output:

\[\eth \Bbbk \complement \circledS \S \mathbb{a} \mathfrak{a} \mathcal{a} \mathrm {a} \mathrm{def}\]

Fractions & Derivative

Fractions

Input:

\frac{a}{b} \tfrac{a}{b} \mathrm{d}t \frac{\mathrm{d} y}{\mathrm{d} x} \partial t
\frac{\partial y}{\partial x} \nabla\psi
\frac{\partial^2}{\partial x_1\partial x_2}y

Output:

\[\frac{a}{b} \tfrac{a}{b} \mathrm{d}t \frac{\mathrm{d} y}{\mathrm{d} x} \partial t \frac{\partial y}{\partial x} \nabla\psi \frac{\partial^2}{\partial x_1\partial x_2}y\]

Input:

\cfrac{1}{a + \cfrac{7}{b + \cfrac{2}{9}}} =c

Output:

\[\cfrac{1}{a + \cfrac{7}{b + \cfrac{2}{9}}} =c\]

Input:

\begin{equation}
  x = a_0 + \cfrac{1}{a_1
          + \cfrac{1}{a_2
          + \cfrac{1}{a_3 + \cfrac{1}{a_4} } } }
\end{equation}

Output:

\[\begin{equation} x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{a_4} } } } \end{equation}\]

Derivative

Input:

\dot{a} \ddot{a} {f}' {f}'' {f}^{(n)}

Output:

\[\dot{a} \ddot{a} {f}' {f}'' {f}^{(n)}\]

Modular arithmetic

Input:

a \bmod b a \equiv b \pmod{m} \gcd(m, n) \operatorname{lcm}(m, n)

Output:

\[a \bmod b a \equiv b \pmod{m} \gcd(m, n) \operatorname{lcm}(m, n)\]

Radicals

Input:

\sqrt{x} \sqrt[n]{x}

Output:

\[\sqrt{x} \sqrt[n]{x}\]

Superscript and Subscript

Input:

x^{a} \  x_{a} \ x_{a}^{b} \ {_{a}^{b}x} \ \sideset{_1^2}{_3^4}X_a^b

Output:

\[x^{a} \ x_{a} \ x_{a}^{b} \ {_{a}^{b}x} \ \sideset{_1^2}{_3^4}X_a^b\]

Accents and Others

Input:

\hat{a}  \check{a} \grave{a} \acute{a} \tilde{a} \breve{a} \bar{a} \vec{a} \not{a}

Output:

\[\hat{a} \check{a} \grave{a} \acute{a} \tilde{a} \breve{a} \bar{a} \vec{a} \not{a}\]

Input:

37^{\circ} \ \widetilde{abc} \ \widehat{abc} \ \overleftarrow{abc} \ \overrightarrow{abc}

Output:

\[37^{\circ} \ \widetilde{abc} \ \widehat{abc} \ \overleftarrow{abc} \ \overrightarrow{abc}\]

Input:

\overline{abc} \ \underline{abc} \  \overbrace{abc} \ \underbrace{abc}

Output:

\[\overline{abc} \ \underline{abc} \ \overbrace{abc} \ \underbrace{abc}\]

Input:

\overset{x}{abc} \ \underset{x}{abc} \ \stackrel\frown{AB} \ \overline{AB} \ \overleftrightarrow{AB}

Output:

\[\overset{x}{abc} \ \underset{x}{abc} \ \stackrel\frown{AB} \ \overline{AB} \ \overleftrightarrow{AB}\]

Input:

\overset{a}{\leftarrow} \ \overset{a}{\rightarrow} \ \xleftarrow[abc]{x} \ \xrightarrow[abc]{x}

Output:

\[\overset{a}{\leftarrow} \ \overset{a}{\rightarrow} \ \xleftarrow[abc]{x} \ \xrightarrow[abc]{x}\]

Limits class

Limits

Input:

\lim{a} \ \lim_{x \to 0} \ \lim_{x \to \infty} \textstyle \ \lim_{x \to 0} \max_x{y} \min_x{y}

Output:

\[\lim{a} \ \lim_{x \to 0} \ \lim_{x \to \infty} \textstyle \ \lim_{x \to 0} \max_x{y} \min_x{y}\]

Logarithms and exponentials

Input:

\log_{a}{b} \ \lg_{a}{b} \ \ln_{a}{b} \ \exp a

Output:

\[\log_{a}{b} \ \lg_{a}{b} \ \ln_{a}{b} \ \exp a\]

Bounds

\min x \max y \sup t \inf s \lim u \limsup w \liminf v \dim p \ker\phi

Output:

\[\min x \max y \sup t \inf s \lim u \limsup w \liminf v \dim p \ker\phi\]

Trigonometry class

Trigonometric functions

Input:

\sin x \cos x \tan x \cot x \sec x \csc x

Output:

\[\sin x \cos x \tan x \cot x \sec x \csc x\]

Inverse trigonometric functions

Input:

\sin^{-1} x \cos^{-1} x \tan^{-1} x \cot^{-1} x \sec^{-1} x \arcsin x  \arccos x

Output:

\[\sin^{-1} x \cos^{-1} x \tan^{-1} x \cot^{-1} x \sec^{-1} x \arcsin x \arccos x\]

Input:

\arctan x \operatorname{arccot} x \operatorname{arcsec} x \operatorname{arccos} x

Output:

\[\arctan x \operatorname{arccot} x \operatorname{arcsec} x \operatorname{arccos} x\]

Hyperbolic functions

Input:

\sinh x \cosh x \tanh x \coth x \operatorname{sech} x \operatorname{csch} x

Output:

\[\sinh x \cosh x \tanh x \coth x \operatorname{sech} x \operatorname{csch} x\]

Inverse hyperbolic functions

Input:

\sinh^{-1} x \cosh^{-1} x \tanh^{-1} x \coth^{-1} x
\operatorname{sech}^{-1} x \operatorname{csch}^{-1}x

Output:

\[\sinh^{-1} x \cosh^{-1} x \tanh^{-1} x \coth^{-1} x \operatorname{sech}^{-1} x \operatorname{csch}^{-1}x\]

Integral operation

Integral

Input:

\int x \int_{a}^{b} x \int\limits_{a}^{b} x

Output:

\[\int x \int_{a}^{b} x \int\limits_{a}^{b} x\]

Double integral

Input:

\iint x \iint_{a}^{b} x \iint\limits_{a}^{b} x

Output:

\[\iint x \iint_{a}^{b} x \iint\limits_{a}^{b} x\]

Triple integral

Input:

\iiint x \iiint_{a}^{b} x \iiint\limits_{a}^{b} x

Output:

\[\iiint x \iiint_{a}^{b} x \iiint\limits_{a}^{b} x\]

Closed line or path integral

Input:

\oint x \oint_{a}^{b}  x

Output:

\[\oint x \oint_{a}^{b} x\]

Summation

Input:

\sum s \sum_{a}^{b} s  {\textstyle \sum_{a}^{b}} s

Output:

\[\sum s \sum_{a}^{b} s {\textstyle \sum_{a}^{b}} s\]

Product and coproduct

Input:

\prod \prod_{a}^{b}  {\textstyle \prod_{a}^{b}} \coprod \coprod_{a}^{b}  {\textstyle \coprod_{a}^{b}}

Output:

\[\prod \prod_{a}^{b} {\textstyle \prod_{a}^{b}} \coprod \coprod_{a}^{b} {\textstyle \coprod_{a}^{b}}\]

Union and intersection

Input:

\bigcup \bigcup_{a}^{b}  {\textstyle \bigcup_{a}^{b}}
\bigcap \bigcap_{a}^{b}  {\textstyle \bigcap_{a}^{b}}

Output:

\[\bigcup \bigcup_{a}^{b} {\textstyle \bigcup_{a}^{b}} \bigcap \bigcap_{a}^{b} {\textstyle \bigcap_{a}^{b}}\]

Disjunction and cojunction

Input:

\bigvee \bigvee_{a}^{b}  {\textstyle \bigvee_{a}^{b}}
\bigwedge \bigwedge_{a}^{b}  {\textstyle \bigwedge_{a}^{b}}

Output:

\[\bigvee \bigvee_{a}^{b} {\textstyle \bigvee_{a}^{b}} \bigwedge \bigwedge_{a}^{b} {\textstyle \bigwedge_{a}^{b}}\]

Brackets

Input:

\left ( a \right )
\left [ a \right ]
\left \langle a \right \rangle
\left \{ a \right \}
\left | a \right |
\left \| a \right \|
\left \lfloor a \right \rfloor
\left \lceil a \right \rceil

Output:

\[\left ( a \right ) \left [ a \right ] \left \langle a \right \rangle \left \{ a \right \} \left | a \right | \left \| a \right \| \left \lfloor a \right \rfloor \left \lceil a \right \rceil\]

Input:

\binom{n}{r}
\left [ 0,1 \right )
\left \langle \psi \right |
\left | \psi  \right \rangle
\left \langle \psi  | \psi  \right \rangle

Output:

\[\binom{n}{r} \left [ 0,1 \right ) \left \langle \psi \right | \left | \psi \right \rangle \left \langle \psi | \psi \right \rangle\]

Matrix

Input:

\begin{matrix}
  1&2  &3 \\
  4&5  &6
\end{matrix}

Output:

\[\begin{split}\begin{matrix} 1&2 &3 \\ 4&5 &6 \end{matrix}\end{split}\]

Input:

\begin{bmatrix}
  1&2  &3 \\
  4&5  &6
\end{bmatrix}

Output:

\[\begin{split}\begin{bmatrix} 1&2 &3 \\ 4&5 &6 \end{bmatrix}\end{split}\]

Input:

\begin{pmatrix}
  1&2  &3 \\
  4&5  &6
\end{pmatrix}

Output:

\[\begin{split}\begin{pmatrix} 1&2 &3 \\ 4&5 &6 \end{pmatrix}\end{split}\]

Input:

\begin{vmatrix}
  1&2  &3 \\
  4&5  &6
\end{vmatrix}

Output:

\[\begin{split}\begin{vmatrix} 1&2 &3 \\ 4&5 &6 \end{vmatrix}\end{split}\]

Input:

\begin{Vmatrix}
  1&2  &3 \\
  4&5  &6
\end{Vmatrix}

Output:

\[\begin{split}\begin{Vmatrix} 1&2 &3 \\ 4&5 &6 \end{Vmatrix}\end{split}\]

Input:

\begin{Bmatrix}
  1&2  &3 \\
  4&5  &6
\end{Bmatrix}

Output:

\[\begin{split}\begin{Bmatrix} 1&2 &3 \\ 4&5 &6 \end{Bmatrix}\end{split}\]

Input:

\left\{\begin{matrix}
  1&2  &3 \\
  4&5  &6
\end{matrix}\right.

Output:

\[\begin{split}\left\{\begin{matrix} 1&2 &3 \\ 4&5 &6 \end{matrix}\right.\end{split}\]

Input:

\left.\begin{matrix}
  1&2  &3 \\
  4&5  &6
\end{matrix}\right\}

Output:

\[\begin{split}\left.\begin{matrix} 1&2 &3 \\ 4&5 &6 \end{matrix}\right\}\end{split}\]

Input:

\begin{cases}
  1& \text{ if } x= 2\\
  3& \text{ if } x=4
\end{cases}

Output:

\[\begin{split}\begin{cases} 1& \text{ if } x= 2\\ 3& \text{ if } x=4 \end{cases}\end{split}\]

Input:

\begin{align*}
  y&=1 \\
  x&=2
\end{align*}

Output:

\[\begin{split}\begin{align*} y&=1 \\ x&=2 \end{align*}\end{split}\]

Formula Template

Algebra

Input:

\left(x-1\right)\left(x+3\right)

Output:

\[\left(x-1\right)\left(x+3\right)\]

Input:

\sqrt{a^2+b^2}

Output:

\[\sqrt{a^2+b^2}\]

Input:

\frac{a}{b}\pm \frac{c}{d}= \frac{ad \pm bc}{bd}

Output:

\[\frac{a}{b}\pm \frac{c}{d}= \frac{ad \pm bc}{bd}\]

Input:

\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0

Output:

\[\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0\frac{1}{\sqrt{a}}=\frac{\sqrt{a}}{a},a\ge 0\]

Input:

x ={-b \pm \sqrt{b^2-4ac}\over 2a}

Output:

\[x ={-b \pm \sqrt{b^2-4ac}\over 2a}\]

Input:

\left\{\begin{matrix}
  x=a + r\text{cos}\theta \\
  y=b + r\text{sin}\theta
\end{matrix}\right.

Output:

\[\begin{split}\left\{\begin{matrix} x=a + r\text{cos}\theta \\ y=b + r\text{sin}\theta \end{matrix}\right.\end{split}\]

Input:

\left ( \frac{a}{b}\right )^{n}= \frac{a^{n}}{b^{n}}

Output:

\[\left ( \frac{a}{b}\right )^{n}= \frac{a^{n}}{b^{n}}\]

Input:

\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1

Output:

\[\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\]

Input:

\sqrt[n]{a^{n}}=\left ( \sqrt[n]{a}\right )^{n}

Output:

\[\sqrt[n]{a^{n}}=\left ( \sqrt[n]{a}\right )^{n}\]

Input:

y-y_{1}=k \left( x-x_{1}\right)

Output:

\[y-y_{1}=k \left( x-x_{1}\right)\]

Input:

\begin{array}{l}
  \text{For equations of the form: }x^{3}-1=0 \\
  \text{let}\text{:}\omega =\frac{-1+\sqrt{3}i}{2} \\
  x_{1}=1,x_{2}= \omega =\frac{-1+\sqrt{3}i}{2} \\
  x_{3}= \omega ^{2}=\frac{-1-\sqrt{3}i}{2}
\end{array}

Output:

\[\begin{split}\begin{array}{l} \text{For equations of the form: }x^{3}-1=0 \\ \text{let}\text{:}\omega =\frac{-1+\sqrt{3}i}{2} \\ x_{1}=1,x_{2}= \omega =\frac{-1+\sqrt{3}i}{2} \\ x_{3}= \omega ^{2}=\frac{-1-\sqrt{3}i}{2} \end{array}\end{split}\]

Input:

\begin{array}{l}
  a\mathop{{x}}\nolimits^{{2}}+bx+c=0 \\
  \Delta =\mathop{{b}}\nolimits^{{2}}-4ac \\
  \mathop{{x}}\nolimits_{{1,2}}=\frac{{-b \pm
  \sqrt{{\mathop{{b}}\nolimits^{{2}}-4ac}}}}{{2a}} \\
  \mathop{{x}}\nolimits_{{1}}+\mathop{{x}}\nolimits_{{2}}=-\frac{{b}}{{a}} \\
  \mathop{{x}}\nolimits_{{1}}\mathop{{x}}\nolimits_{{2}}=\frac{{c}}{{a}}
\end{array}

Output:

\[\begin{split}\begin{array}{l} a\mathop{{x}}\nolimits^{{2}}+bx+c=0 \\ \Delta =\mathop{{b}}\nolimits^{{2}}-4ac \\ \mathop{{x}}\nolimits_{{1,2}}=\frac{{-b \pm \sqrt{{\mathop{{b}}\nolimits^{{2}}-4ac}}}}{{2a}} \\ \mathop{{x}}\nolimits_{{1}}+\mathop{{x}}\nolimits_{{2}}=-\frac{{b}}{{a}} \\ \mathop{{x}}\nolimits_{{1}}\mathop{{x}}\nolimits_{{2}}=\frac{{c}}{{a}} \end{array}\end{split}\]

Input:

\begin{array}{l}
  a\mathop{{x}}\nolimits^{{2}}+bx+c=0 \\
  \Delta =\mathop{{b}}\nolimits^{{2}}-4ac \\
  \left\{\begin{matrix}
  \Delta \gt 0\text{ The equation has two distinct real roots} \\
  \Delta = 0\text{ The equation has two equal real roots} \\
  \Delta \lt 0\text{ The equation has two complex roots}
  \end{matrix}\right.
\end{array}

Output:

\[\begin{split}\begin{array}{l} a\mathop{{x}}\nolimits^{{2}}+bx+c=0 \\ \Delta =\mathop{{b}}\nolimits^{{2}}-4ac \\ \left\{\begin{matrix} \Delta \gt 0\text{ The equation has two distinct real roots} \\ \Delta = 0 \text{ The equation has two equal real roots }\quad \\ \Delta \lt 0\text{ The equation has two complex roots}\qquad \end{matrix}\right. \end{array}\end{split}\]

Space

Input:

\begin{array}{l}
  a\quad b \\
  a\qquad b \\
  a\enspace b \\
  a\;b \\
  a\:b \\
  a\,b \\
  a\!b
\end{array}

Output:

\[\begin{split}\begin{array}{l} a\quad b \\ a\qquad b \\ a\enspace b \\ a\;b \\ a\:b \\ a\,b \\ a\!b \end{array}\end{split}\]

Geometry

Input:

\begin{array}{l}
  \Delta A B C \\
  l \perp \beta ,l \subset \alpha \Rightarrow \alpha \perp \beta \\
  a \parallel c,b \parallel c \Rightarrow a \parallel b \\
  P \in \alpha ,P \in \beta , \alpha \cap \beta =l \Rightarrow P \in l \\
  A \in l,B \in l,A \in \alpha ,B \in \alpha \Rightarrow l \subset \alpha
\end{array}

Output:

\[\begin{split}\begin{array}{l} \Delta A B C \\ l \perp \beta ,l \subset \alpha \Rightarrow \alpha \perp \beta \\ a \parallel c,b \parallel c \Rightarrow a \parallel b \\ P \in \alpha ,P \in \beta , \alpha \cap \beta =l \Rightarrow P \in l \\ A \in l,B \in l,A \in \alpha ,B \in \alpha \Rightarrow l \subset \alpha \end{array}\end{split}\]

Input:

\left.\begin{matrix}
  a \perp \alpha \\
  b \perp \alpha
\end{matrix}\right\}\Rightarrow a \parallel b

Output:

\[\begin{split}\left.\begin{matrix} a \perp \alpha \\ b \perp \alpha \end{matrix}\right\}\Rightarrow a \parallel b\end{split}\]

Input:

\left.\begin{matrix}
  a \subset \beta ,b \subset \beta ,a \cap b=P \\
  a \parallel \partial ,b \parallel \partial
\end{matrix}\right\}\Rightarrow \beta \parallel \alpha

Output:

\[\begin{split}\left.\begin{matrix} a \subset \beta ,b \subset \beta ,a \cap b=P \\ a \parallel \partial ,b \parallel \partial \end{matrix}\right\}\Rightarrow \beta \parallel \alpha\end{split}\]

Input:

\begin{array}{c}
  \alpha \perp \beta , \alpha \cap \beta =l,a \subset \alpha ,a \perp l  \Rightarrow a \perp \beta  \\
  \alpha \parallel \beta , \gamma \cap \alpha =a, \gamma \cap \beta =b \Rightarrow a \parallel b \\
  a^{2}+b^{2}=c^{2}
\end{array}

Output:

\[\begin{split}\begin{array}{c} \alpha \perp \beta , \alpha \cap \beta =l,a \subset \alpha ,a \perp l \Rightarrow a \perp \beta \\ \alpha \parallel \beta , \gamma \cap \alpha =a, \gamma \cap \beta =b \Rightarrow a \parallel b \\ a^{2}+b^{2}=c^{2} \end{array}\end{split}\]

Inequality

Input:

\begin{array}{c}
  a > b,b > c \Rightarrow a > c  \\
  a > b > 0,c > d > 0 \Rightarrow ac > bd   \\
  a > b,c > d \Rightarrow a+c > b+d \\
  \left | a-b \right | \geqslant \left | a \right | -\left | b \right | \\
  \left | a \right |\leqslant b \Rightarrow -b \leqslant a \leqslant \left | b \right | \\
  -\left | a \right |\leq a\leqslant \left | a \right |   \\
  \left | a+b \right | \leqslant \left | a \right | + \left | b \right |
\end{array}

Output:

\[\begin{split}\begin{array}{c} a > b,b > c \Rightarrow a > c \\ a > b > 0,c > d > 0 \Rightarrow ac > bd \\ a > b,c > d \Rightarrow a+c > b+d \\ \left | a-b \right | \geqslant \left | a \right | -\left | b \right | \\ \left | a \right |\leqslant b \Rightarrow -b \leqslant a \leqslant \left | b \right | \\ -\left | a \right |\leq a\leqslant \left | a \right | \\ \left | a+b \right | \leqslant \left | a \right | + \left | b \right | \end{array}\end{split}\]

Input:

\begin{array}{c}
  a \gt b,c \gt 0 \Rightarrow ac \gt bc \\
  a \gt b,c \lt 0 \Rightarrow ac \lt bc
\end{array}

Output:

\[\begin{split}\begin{array}{c} a \gt b,c \gt 0 \Rightarrow ac \gt bc \\ a \gt b,c \lt 0 \Rightarrow ac \lt bc \end{array}\end{split}\]

Input:

\begin{array}{c}
  a \gt b \gt 0,n \in N^{\ast},n \gt 1 \\
  \Rightarrow a^{n}\gt b^{n}, \sqrt[n]{a}\gt \sqrt[n]{b}
\end{array}

Output:

\[\begin{split}\begin{array}{c} a \gt b \gt 0,n \in N^{\ast},n \gt 1 \\ \Rightarrow a^{n}\gt b^{n}, \sqrt[n]{a}\gt \sqrt[n]{b} \end{array}\end{split}\]

Input:

\left( \sum_{k=1}^n a_k b_k \right)^{\!\!2}\leq
\left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)

Output:

\[\left( \sum_{k=1}^n a_k b_k \right)^{\!\!2}\leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)\]

Input:

\begin{array}{c}
  a,b \in R^{+} \\
  \Rightarrow \frac{a+b}{{2}}\ge \sqrt{ab} \\
  \left( \text{Equality holds if and only if }a=b\right)
\end{array}

Output:

\[\begin{split}\begin{array}{c} a,b \in R^{+} \\ \Rightarrow \frac{a+b}{{2}}\ge \sqrt{ab} \\ \left( \text{Equality holds if and only if }a=b\right) \end{array}\end{split}\]

Input:

\begin{array}{c}
  a,b \in R \\
  \Rightarrow a^{2}+b^{2}\ge 2ab \\
  \left( \text{Equality holds if and only if }a=b\right)
\end{array}

Output:

\[\begin{split}\begin{array}{c} a,b \in R \\ \Rightarrow a^{2}+b^{2}\ge 2ab \\ \left( \text{Equality holds if and only if }a=b\right) \end{array}\end{split}\]

Input:

\begin{array}{c}
  H_{n}=\frac{n}{\sum \limits_{i=1}^{n}\frac{1}{x_{i}}}= \frac{n}{\frac{1}{x_{1}}+ \frac{1}{x_{2}}+ \cdots + \frac{1}{x_{n}}} \\
  G_{n}=\sqrt[n]{\prod \limits_{i=1}^{n}x_{i}}= \sqrt[n]{x_{1}x_{2}\cdots x_{n}} \\
  A_{n}=\frac{1}{n}\sum \limits_{i=1}^{n}x_{i}=\frac{x_{1}+ x_{2}+ \cdots + x_{n}}{n} \\
  Q_{n}=\sqrt{\sum \limits_{i=1}^{n}x_{i}^{2}}= \sqrt{\frac{x_{1}^{2}+ x_{2}^{2}+ \cdots + x_{n}^{2}}{n}} \\
  H_{n}\leq G_{n}\leq A_{n}\leq Q_{n}
\end{array}

Output:

\[\begin{split}\begin{array}{c} H_{n}=\frac{n}{\sum \limits_{i=1}^{n}\frac{1}{x_{i}}}= \frac{n}{\frac{1}{x_{1}}+ \frac{1}{x_{2}}+ \cdots + \frac{1}{x_{n}}} \\ G_{n}=\sqrt[n]{\prod \limits_{i=1}^{n}x_{i}}= \sqrt[n]{x_{1}x_{2}\cdots x_{n}} \\ A_{n}=\frac{1}{n}\sum \limits_{i=1}^{n}x_{i}=\frac{x_{1}+ x_{2}+ \cdots + x_{n}}{n} \\ Q_{n}=\sqrt{\sum \limits_{i=1}^{n}x_{i}^{2}}= \sqrt{\frac{x_{1}^{2}+ x_{2}^{2}+ \cdots + x_{n}^{2}}{n}} \\ H_{n}\leq G_{n}\leq A_{n}\leq Q_{n} \end{array}\end{split}\]

Integral

Input:

\begin{array}{l}
  \frac{\mathrm{d}}{\mathrm{d}x}x^n=nx^{n-1} \\
  \frac{\mathrm{d}}{\mathrm{d}x}\ln(x)=\frac{1}{x}  \\
  \frac{\mathrm{d}}{\mathrm{d}x}\cos x=-\sin x   \\
  \frac{\mathrm{d}}{\mathrm{d}x}\tan x=\sec^2 x   \\
  \int \frac{1}{x}\mathrm{d}x= \ln \left| x \right| +C \\
  \int \frac{1}{1+x^{2}}\mathrm{d}x= \arctan x +C \\
  f(x) = \int_{-\infty}^\infty  \hat f(x)\xi\,e^{2 \pi i \xi x}  \,\mathrm{d}\xi
\end{array}

Output:

\[\begin{split}\begin{array}{l} \frac{\mathrm{d}}{\mathrm{d}x}x^n=nx^{n-1} \\ \frac{\mathrm{d}}{\mathrm{d}x}\ln(x)=\frac{1}{x} \\ \frac{\mathrm{d}}{\mathrm{d}x}\cos x=-\sin x \\ \frac{\mathrm{d}}{\mathrm{d}x}\tan x=\sec^2 x \\ \int \frac{1}{x}\mathrm{d}x= \ln \left| x \right| +C \\ \int \frac{1}{1+x^{2}}\mathrm{d}x= \arctan x +C \\ f(x) = \int_{-\infty}^\infty \hat f(x)\xi\,e^{2 \pi i \xi x} \,\mathrm{d}\xi \end{array}\end{split}\]

Input:

\begin{array}{l}
  \frac{\mathrm{d}}{\mathrm{d}x}e^{ax}=a\,e^{ax}  \\
  \frac{\mathrm{d}}{\mathrm{d}x}\sin x=\cos x   \\
  \int k\mathrm{d}x = kx+C   \\
  \frac{\mathrm{d}}{\mathrm{d}x}\cot x=-\csc^2 x    \\
  \int \frac{1}{\sqrt{1-x^{2}}}\mathrm{d}x= \arcsin x +C   \\
  \int u \frac{\mathrm{d}v}{\mathrm{d}x}\,\mathrm{d}x=uv-\int \frac{\mathrm{d}u}{\mathrm{d}x}v\,\mathrm{d}x  \\
  \int x^{\mu}\mathrm{d}x=\frac{x^{\mu +1}}{\mu +1}+C, \left({\mu \neq -1}\right)
\end{array}

Output:

\[\begin{split}\begin{array}{l} \frac{\mathrm{d}}{\mathrm{d}x}e^{ax}=a\,e^{ax} \\ \frac{\mathrm{d}}{\mathrm{d}x}\sin x=\cos x \\ \int k\mathrm{d}x = kx+C \\ \frac{\mathrm{d}}{\mathrm{d}x}\cot x=-\csc^2 x \\ \int \frac{1}{\sqrt{1-x^{2}}}\mathrm{d}x= \arcsin x +C \\ \int u \frac{\mathrm{d}v}{\mathrm{d}x}\,\mathrm{d}x=uv-\int \frac{\mathrm{d}u}{\mathrm{d}x}v\,\mathrm{d}x \\ \int x^{\mu}\mathrm{d}x=\frac{x^{\mu +1}}{\mu +1}+C, \left({\mu \neq -1}\right) \end{array}\end{split}\]

Matrix

Input:

\begin{pmatrix}
  1 & 0 \\
  0 & 1
\end{pmatrix}

Output:

\[\begin{split}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\end{split}\]

Input:

\begin{pmatrix}
  a_{11} & a_{12} & a_{13} \\
  a_{21} & a_{22} & a_{23} \\
  a_{31} & a_{32} & a_{33}
\end{pmatrix}

Output:

\[\begin{split}\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}\end{split}\]

Input:

\begin{pmatrix}
  a_{11} & \cdots & a_{1n} \\
  \vdots & \ddots & \vdots \\
  a_{m1} & \cdots & a_{mn}
\end{pmatrix}

Output:

\[\begin{split}\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}\end{split}\]

Input:

O = \begin{bmatrix}
  0 & 0 & \cdots & 0 \\
  0 & 0 & \cdots & 0 \\
  \vdots & \vdots & \ddots & \vdots \\
  0 & 0 & \cdots & 0
\end{bmatrix}

Output:

\[\begin{split}O = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}\end{split}\]

Input:

A_{m\times n}=
\begin{bmatrix}
  a_{11}& a_{12}& \cdots  & a_{1n} \\
  a_{21}& a_{22}& \cdots  & a_{2n} \\
  \vdots & \vdots & \ddots & \vdots \\
  a_{m1}& a_{m2}& \cdots  & a_{mn}
\end{bmatrix}
=\left [ a_{ij}\right ]

Output:

\[\begin{split}A_{m\times n}= \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}& a_{m2}& \cdots & a_{mn} \end{bmatrix} =\left [ a_{ij}\right ]\end{split}\]

Input:

\begin{array}{c}
  A={\left[ a_{ij}\right]_{m \times n}},B={\left[ b_{ij}\right]_{n \times s}} \\
  c_{ij}= \sum \limits_{k=1}^{{n}}a_{ik}b_{kj} \\
  C=AB=\left[ c_{ij}\right]_{m \times s}
  = \left[ \sum \limits_{k=1}^{n}a_{ik}b_{kj}\right]_{m \times s}
\end{array}

Output:

\[\begin{split}\begin{array}{c} A={\left[ a_{ij}\right]_{m \times n}},B={\left[ b_{ij}\right]_{n \times s}} \\ c_{ij}= \sum \limits_{k=1}^{{n}}a_{ik}b_{kj} \\ C=AB=\left[ c_{ij}\right]_{m \times s} = \left[ \sum \limits_{k=1}^{n}a_{ik}b_{kj}\right]_{m \times s} \end{array}\end{split}\]

Input:

\mathbf{V}_1 \times \mathbf{V}_2 =
\begin{vmatrix}
  \mathbf{i}& \mathbf{j}& \mathbf{k} \\
  \frac{\partial X}{\partial u}& \frac{\partial Y}{\partial u}& 0 \\
  \frac{\partial X}{\partial v}& \frac{\partial Y}{\partial v}& 0 \\
\end{vmatrix}

Output:

\[\begin{split}\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i}& \mathbf{j}& \mathbf{k} \\ \frac{\partial X}{\partial u}& \frac{\partial Y}{\partial u}& 0 \\ \frac{\partial X}{\partial v}& \frac{\partial Y}{\partial v}& 0 \\ \end{vmatrix}\end{split}\]

Input:

\begin{array}{c}
  A=A^{T}  \\
  A=-A^{T}
\end{array}

Output:

\[\begin{split}\begin{array}{c} A=A^{T} \\ A=-A^{T} \end{array}\end{split}\]

Triangle

Input:

\begin{array}{l}
  e^{i \theta}  \\
  \text{sin}^{2}\frac{\alpha}{2}=\frac{1- \text{cos}\alpha}{2}  \\
  \text{tan}\frac{\alpha}{2}=\frac{\text{sin}\alpha}{1+ \text{cos}\alpha} \\
  \sin \alpha - \sin \beta =2 \cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} \\
  \cos \alpha - \cos \beta =-2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} \\
  \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2R} \\
  \sin \left ( \frac{\pi}{2}+\alpha \right ) = \cos \alpha
\end{array}

Output:

\[\begin{split}\begin{array}{l} e^{i \theta} \\ \text{sin}^{2}\frac{\alpha}{2}=\frac{1- \text{cos}\alpha}{2} \\ \text{tan}\frac{\alpha}{2}=\frac{\text{sin}\alpha}{1+ \text{cos}\alpha} \\ \sin \alpha - \sin \beta =2 \cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} \\ \cos \alpha - \cos \beta =-2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} \\ \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}=\frac{1}{2R} \\ \sin \left ( \frac{\pi}{2}+\alpha \right ) = \cos \alpha \end{array}\end{split}\]

Input:

\begin{array}{l}
  \left(\frac{\pi}{2}-\theta \right )   \\
  \text{cos}^{2}\frac{\alpha}{2}=\frac{1+ \text{cos}\alpha}{2}   \\
  \sin \alpha + \sin \beta =2 \sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}  \\
  \cos \alpha + \cos \beta =2 \cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}  \\
  a^{2}=b^{2}+c^{2}-2bc\cos A  \\
  \sin \left ( \frac{\pi}{2}-\alpha \right ) = \cos \alpha
\end{array}

Output:

\[\begin{split}\begin{array}{l} \left(\frac{\pi}{2}-\theta \right ) \\ \text{cos}^{2}\frac{\alpha}{2}=\frac{1+ \text{cos}\alpha}{2} \\ \sin \alpha + \sin \beta =2 \sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} \\ \cos \alpha + \cos \beta =2 \cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} \\ a^{2}=b^{2}+c^{2}-2bc\cos A \\ \sin \left ( \frac{\pi}{2}-\alpha \right ) = \cos \alpha \end{array}\end{split}\]

Statistics

Input:

\begin{array}{l}
  C_{r}^{n}    \\
  \sum_{i=1}^{n}{X_i}    \\
  X_1, \cdots,X_n   \\
  \sum_{i=1}^{n}{(X_i - \overline{X})^2}   \\
  P(E) ={n \choose k}p^k (1-p)^{n-k}   \\
\end{array}

Output:

\[\begin{split}\begin{array}{l} C_{r}^{n} \\ \sum_{i=1}^{n}{X_i} \\ X_1, \cdots,X_n \\ \sum_{i=1}^{n}{(X_i - \overline{X})^2} \\ P(E) ={n \choose k}p^k (1-p)^{n-k} \\ \end{array}\end{split}\]

Input:

\begin{array}{l}
  \frac{n!}{r!(n-r)!}    \\
  \sum_{i=1}^{n}{X_i^2}     \\
  \frac{x-\mu}{\sigma}   \\
  P \left( A \right) = \lim \limits_{n \to \infty}f_{n}\left ( A \right )    \\
\end{array}

Output:

\[\begin{split}\begin{array}{l} \frac{n!}{r!(n-r)!} \\ \sum_{i=1}^{n}{X_i^2} \\ \frac{x-\mu}{\sigma} \\ P \left( A \right) = \lim \limits_{n \to \infty}f_{n}\left ( A \right ) \\ \end{array}\end{split}\]

Input:

P \left( \bigcup \limits_{i=1}^{+ \infty}A_{i}\right) =
\prod \limits_{i=1}^{+ \infty}P{\left( A_{i}\right)}

Output:

\[P \left( \bigcup \limits_{i=1}^{+ \infty}A_{i}\right) = \prod \limits_{i=1}^{+ \infty}P{\left( A_{i}\right)}\]

Input:

P \left( \bigcup \limits_{i=1}^{n}A_{i}\right) =
\prod \limits_{i=1}^{n}P \left( A_{i}\right)

Output:

\[P \left( \bigcup \limits_{i=1}^{n}A_{i}\right) = \prod \limits_{i=1}^{n}P \left( A_{i}\right)\]

Input:

\begin{array}{c}
  \forall A \in S \\
  P \left( A \right) \ge 0
\end{array}

Output:

\[\begin{split}\begin{array}{c} \forall A \in S \\ P \left( A \right) \ge 0 \end{array}\end{split}\]

Input:

\begin{array}{c}
  P \left( \emptyset \right) =0 \\
  P \left( S \right) =1
\end{array}

Output:

\[\begin{split}\begin{array}{c} P \left( \emptyset \right) =0 \\ P \left( S \right) =1 \end{array}\end{split}\]

Input:

\begin{array}{c}
  S= \binom{N}{n},A_{k}=\binom{M}{k}\cdot \binom{N-M}{n-k} \\
  P\left ( A_{k}\right ) = \frac{\binom{M}{k}\cdot \binom{N-M}{n-k}}{\binom{N}{n}}
\end{array}

Output:

\[\begin{split}\begin{array}{c} S= \binom{N}{n},A_{k}=\binom{M}{k}\cdot \binom{N-M}{n-k} \\ P\left ( A_{k}\right ) = \frac{\binom{M}{k}\cdot \binom{N-M}{n-k}}{\binom{N}{n}} \end{array}\end{split}\]

Input:

\begin{array}{c}
  P_{n}=n! \\
  A_{n}^{k}=\frac{n!}{\left( n-k \left) !\right. \right.}
\end{array}

Output:

\[\begin{split}\begin{array}{c} P_{n}=n! \\ A_{n}^{k}=\frac{n!}{\left( n-k \left) !\right. \right.} \end{array}\end{split}\]

Input:

\begin{array}{c}
  \text{If } P(AB) = P(A)P(B) \\
  \text{then } P(A|B) = \dfrac{P(B)}{1-P(\overline{B})}
\end{array}

Output:

\[\begin{split}\begin{array}{c} \text{If } P(AB) = P(A)P(B) \\ \text{then } P(A|B) = \dfrac{P(B)}{1-P(\overline{B})} \end{array}\end{split}\]

Sequence

Input:

\begin{array}{l}
  a_{n}=a_{1}q^{n-1}  \\
  S_{n}=na_{1}+\frac{n \left( n-1 \right)}{{2}}d \\
  \frac{1}{n \left( n+k \right)}= \frac{1}{k}\left( \frac{1}{n}-\frac{1}{n+k}\right) \\
  \frac{1}{4n^{2}-1}=\frac{1}{2}\left( \frac{1}{2n-1}-\frac{1}{2n+1}\right) \\
\end{array}

Output:

\[\begin{split}\begin{array}{l} a_{n}=a_{1}q^{n-1} \\ S_{n}=na_{1}+\frac{n \left( n-1 \right)}{{2}}d \\ \frac{1}{n \left( n+k \right)}= \frac{1}{k}\left( \frac{1}{n}-\frac{1}{n+k}\right) \\ \frac{1}{4n^{2}-1}=\frac{1}{2}\left( \frac{1}{2n-1}-\frac{1}{2n+1}\right) \\ \end{array}\end{split}\]

Input:

\begin{array}{l}
  a_{n}=a_{1}+ \left( n-1 \left) d\right. \right.   \\
  S_{n}=\frac{n \left( a_{1}+a_{n}\right)}{2} \\
  \frac{1}{n^{2}-1}= \frac{1}{2}\left( \frac{1}{n-1}-\frac{1}{n+1}\right)  \\
  \frac{n+1}{n \left( n-1 \left) \cdot 2^{n}\right. \right.}=
  \frac{1}{\left( n-1 \left) \cdot 2^{n-1}\right. \right.}-\frac{1}{n \cdot 2^{n}}  \\
  (1+x)^{n} =1 + \frac{nx}{1!} + \frac{n(n-1)x^{2}}{2!} + \cdots
\end{array}

Output:

\[\begin{split}\begin{array}{l} a_{n}=a_{1}+ \left( n-1 \left) d\right. \right. \\ S_{n}=\frac{n \left( a_{1}+a_{n}\right)}{2} \\ \frac{1}{n^{2}-1}= \frac{1}{2}\left( \frac{1}{n-1}-\frac{1}{n+1}\right) \\ \frac{n+1}{n \left( n-1 \left) \cdot 2^{n}\right. \right.}= \frac{1}{\left( n-1 \left) \cdot 2^{n-1}\right. \right.}-\frac{1}{n \cdot 2^{n}} \\ (1+x)^{n} =1 + \frac{nx}{1!} + \frac{n(n-1)x^{2}}{2!} + \cdots \end{array}\end{split}\]

Input:

\begin{array}{c}
  \text{If}\left \{a_{n}\right \},\left \{b_{n}\right \}\text{are arithmetic progressions}, \\
  \text{then}\left \{a_{n}+ b_{n}\right \}\text{is an arithmetic progression.}
\end{array}

Output:

\[\begin{split}\begin{array}{c} \text{If}\left \{a_{n}\right \},\left \{b_{n}\right \}\text{are arithmetic progressions}, \\ \text{then}\left \{a_{n}+ b_{n}\right \}\text{is an arithmetic progression.} \end{array}\end{split}\]

Physics

Input:

\sum {{{ \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} }_i}} =
\frac{{d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over v} }}{{dt}} = 0

Output:

\[\sum {{{ \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} }_i}} = \frac{{d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over v} }}{{dt}} = 0\]

Input:

{{ \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} }_{12}} =
  - {{ \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}}  \over F} }_{21}}

Output:

\[{{ \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} }_{12}} = - {{ \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} }_{21}}\]

Input:

\mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}}  \over F}  =
 k \frac{{Qq}}{{{r^2}}} \hat{r}

Output:

\[\mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} = k \frac{{Qq}}{{{r^2}}} \hat{r}\]

Input:

d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over B} =
\frac{{{ \mu _0}}}{{4 \pi }} \frac{{Idl \times \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over r} }}{{{r^3}}} =
\frac{{{ \mu _0}}}{{4 \pi }} \frac{{Idl \sin \theta }}{{{r^2}}}

Output:

\[d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over B} = \frac{{{ \mu _0}}}{{4 \pi }} \frac{{Idl \times \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over r} }}{{{r^3}}} = \frac{{{ \mu _0}}}{{4 \pi }} \frac{{Idl \sin \theta }}{{{r^2}}}\]

Input:

E = n{{ \Delta \Phi } \over {\Delta {t} }}

Output:

\[E = n{{ \Delta \Phi } \over {\Delta {t} }}\]

Input:

\oint { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over E} \cdot {d\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over l}}  =
- {{d{\varphi _B}} \over {dt}}}

Output:

\[\oint { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over E} \cdot {d\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$}}\over l}} = - {{d{\varphi _B}} \over {dt}}}\]

Input:

Q = I ^ { 2 } R \mathrm { t }

Output:

\[Q = I ^ { 2 } R \mathrm { t }\]

Input:

{E_k} = hv - {W_0}

Output:

\[{E_k} = hv - {W_0}\]

Input:

\Delta {x} \Delta {p} \ge \frac{h}{{4 \pi }}

Output:

\[\Delta {x} \Delta {p} \ge \frac{h}{{4 \pi }}\]

Input:

{y_0} = A \cos ( \omega {t} + { \varphi _0})

Output:

\[{y_0} = A \cos ( \omega {t} + { \varphi _0})\]

Input:

\mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F}  =
m \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}}  \over a}  =
m \frac{{{d^2} \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over r} }}{{d{t^2}}}

Output:

\[\mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over F} = m \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over a} = m \frac{{{d^2} \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over r} }}{{d{t^2}}}\]

Input:

{E_p} = -\frac{{GMm}}{r}

Output:

\[{E_p} = -\frac{{GMm}}{r}\]

Input:

\oint_L { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over E} }
\cdot { \rm{d}} \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}}  \over l}  = 0

Output:

\[\oint_L { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over E} } \cdot { \rm{d}} \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over l} = 0\]

Input:

d \vec{F}= Id \vec{l} \times \vec{B}

Output:

\[d \vec{F}= Id \vec{l} \times \vec{B}\]

Input:

\mathop \Phi \nolimits_e =
\oint { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over E} \cdot {d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over S}}  =
{1 \over {{\varepsilon _0}}}\sum {q} }

Output:

\[\mathop \Phi \nolimits_e = \oint { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over E} \cdot {d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over S}} = {1 \over {{\varepsilon _0}}}\sum {q} }\]

Input:

\oint { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over B}
\cdot {d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over l}}  =
{ \mu _0}} I + { \mu _0}{I_d}

Output:

\[\oint { \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over B} \cdot {d \mathord{ \buildrel{ \lower3pt \hbox{$ \scriptscriptstyle \rightharpoonup$}} \over l}} = { \mu _0}} I + { \mu _0}{I_d}\]

Input:

F = G{{Mm} \over {{r^2}}}

Output:

\[F = G{{Mm} \over {{r^2}}}\]

Input:

\lambda = \frac{{ \frac{{{c^2}}}{v}}}{{ \frac{{m{c^2}}}{h}}} = \frac{h}{{mv}} = \frac{h}{p}

Output:

\[\lambda = \frac{{ \frac{{{c^2}}}{v}}}{{ \frac{{m{c^2}}}{h}}} = \frac{h}{{mv}} = \frac{h}{p}\]

Input:

l = {l_0} \sqrt {1 - {{( \frac{v}{c})}^2}}

Output:

\[l = {l_0} \sqrt {1 - {{( \frac{v}{c})}^2}}\]

Input:

y(t) = A \cos ( \frac{{2 \pi {x}}}{ \lambda } +  \varphi )

Output:

\[y(t) = A \cos ( \frac{{2 \pi {x}}}{ \lambda } + \varphi )\]

Input:

\begin{array}{l}
  \nabla \cdot \mathbf{E} =\cfrac{\rho}{\varepsilon _0}  \\
  \nabla \cdot \mathbf{B} = 0 \\
  \nabla \times  \mathbf{E} = -\cfrac{\partial \mathbf{B}}{\partial t }  \\
  \nabla \times  \mathbf{B} = \mu _0\mathbf{J} + \mu _0\varepsilon_0 \cfrac{\partial \mathbf{E}}{\partial t }
\end{array}

Output:

\[\begin{split}\begin{array}{l} \nabla \cdot \mathbf{E} =\cfrac{\rho}{\varepsilon _0} \\ \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{E} = -\cfrac{\partial \mathbf{B}}{\partial t } \\ \nabla \times \mathbf{B} = \mu _0\mathbf{J} + \mu _0\varepsilon_0 \cfrac{\partial \mathbf{E}}{\partial t } \end{array}\end{split}\]

Input:

%Unicode extension support needs to be enabled in settings for this formula.
\begin{array}{l}
  {\huge \unicode{8751}}_\mathbb{S}  \mathbf{E} \cdot\mathrm{d}s= \cfrac{Q}{\varepsilon_0}  \\
  {\huge \unicode{8751}}_\mathbb{S}  \mathbf{B} \cdot\mathrm{d}s= 0 \\
  {\huge \oint}_{\mathbb{L}}^{} \mathbf{E} \cdot \mathrm{d}l=-\cfrac{\mathrm{d}\Phi _{\mathbf{B}}}{\mathrm{d}t }  \\
  {\huge \oint}_{\mathbb{L}}^{} \mathbf{B} \cdot \mathrm{d}l=\mu_0I+ \mu_0 \varepsilon_0\cfrac{\mathrm{d}\Phi _{\mathbf{E}}}{\mathrm{d}t }
\end{array}

Output:

\[\begin{split}%Unicode extension support needs to be enabled in settings for this formula. \begin{array}{l} {\huge \unicode{8751}}_\mathbb{S} \mathbf{E} \cdot\mathrm{d}s= \cfrac{Q}{\varepsilon_0} \\ {\huge \unicode{8751}}_\mathbb{S} \mathbf{B} \cdot\mathrm{d}s= 0 \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{E} \cdot \mathrm{d}l=-\cfrac{\mathrm{d}\Phi _{\mathbf{B}}}{\mathrm{d}t } \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{B} \cdot \mathrm{d}l=\mu_0I+ \mu_0 \varepsilon_0\cfrac{\mathrm{d}\Phi _{\mathbf{E}}}{\mathrm{d}t } \end{array}\end{split}\]

Input:

\begin{array}{l}
  \nabla \cdot \mathbf{D} =\rho _f \\
  \nabla \cdot \mathbf{B} = 0 \\
  \nabla \times  \mathbf{E} = -\cfrac{\partial \mathbf{B}}{\partial t }  \\
  \nabla \times  \mathbf{H} = \mathbf{J}_f +  \cfrac{\partial \mathbf{D}}{\partial t }
\end{array}

Output:

\[\begin{split}\begin{array}{l} \nabla \cdot \mathbf{D} =\rho _f \\ \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{E} = -\cfrac{\partial \mathbf{B}}{\partial t } \\ \nabla \times \mathbf{H} = \mathbf{J}_f + \cfrac{\partial \mathbf{D}}{\partial t } \end{array}\end{split}\]

Input:

%Unicode extension support needs to be enabled in settings for this formula.
\begin{array}{l}
  {\huge \unicode{8751}}_\mathbb{S}  \mathbf{D} \cdot\mathrm{d}s= Q_f \\
  {\huge \unicode{8751}}_\mathbb{S}  \mathbf{B} \cdot\mathrm{d}s= 0 \\
  {\huge \oint}_{\mathbb{L}}^{} \mathbf{E} \cdot \mathrm{d}l=-\cfrac{\mathrm{d}\Phi _{\mathbf{B}}}{\mathrm{d}t }  \\
  {\huge \oint}_{\mathbb{L}}^{} \mathbf{H} \cdot \mathrm{d}l=I_f+\cfrac{\mathrm{d}\Phi _{\mathbf{D}}}{\mathrm{d}t }
\end{array}

Output:

\[\begin{split}%Unicode extension support needs to be enabled in settings for this formula. \begin{array}{l} {\huge \unicode{8751}}_\mathbb{S} \mathbf{D} \cdot\mathrm{d}s= Q_f \\ {\huge \unicode{8751}}_\mathbb{S} \mathbf{B} \cdot\mathrm{d}s= 0 \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{E} \cdot \mathrm{d}l=-\cfrac{\mathrm{d}\Phi _{\mathbf{B}}}{\mathrm{d}t } \\ {\huge \oint}_{\mathbb{L}}^{} \mathbf{H} \cdot \mathrm{d}l=I_f+\cfrac{\mathrm{d}\Phi _{\mathbf{D}}}{\mathrm{d}t } \end{array}\end{split}\]

Chemical

Input:

%This formula requires enabling the mhchem extension support in the 【Settings】.
\ce{SO4^2- + Ba^2+ -> BaSO4 v}

Output:

\[%This formula requires enabling the mhchem extension support in the 【Settings】. \ce{SO4^2- + Ba^2+ -> BaSO4 v}\]

Input:

\ce{A v B (v) -> B ^ B (^)}

Output:

\[\ce{A v B (v) -> B ^ B (^)}\]

Input:

\ce{Hg^2+ ->[I-]  $\underset{\mathrm{red}}{\ce{HgI2}}$  ->[I-]  $\underset{\mathrm{red}}{\ce{[Hg^{II}I4]^2-}}$}

Output:

\[\ce{Hg^2+ ->[I-] $\underset{\mathrm{red}}{\ce{HgI2}}$ ->[I-] $\underset{\mathrm{red}}{\ce{[Hg^{II}I4]^2-}}$}\]

Input:

\ce{Zn^2+  <=>[+ 2OH-][+ 2H+]  $\underset{\text{amphoteres Hydroxid}}{\ce{Zn(OH)2 v}}$
<=>[+ 2OH-][+ 2H+]  $\underset{\text{Hydroxozikat}}{\ce{[Zn(OH)4]^2-}}$}

Output:

\[\ce{Zn^2+ <=>[+ 2OH-][+ 2H+] $\underset{\text{amphoteres Hydroxid}}{\ce{Zn(OH)2 v}}$ <=>[+ 2OH-][+ 2H+] $\underset{\text{Hydroxozikat}}{\ce{[Zn(OH)4]^2-}}$}\]

Big

Input:

( \big( \Big( \bigg( \Bigg(

Output:

\[( \big( \Big( \bigg( \Bigg(\]