In physics, the Navier–Stokes equations (/nævˈjeɪ stoʊks/ nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842-1850 (Stokes).
Conservation Equations
Conservation Laws
One group of the fundamental equations of continuum mechanics arises from the conservation
laws. These equations must always be satisfied by physical systems. Four conservation laws
relevant to thermomechanical systems are considered here:
Conservation of mass
Conservation of linear momentum, often called conservation of momentum
Conservation of energy
Conservation of angular momentum.
The conservation laws are also known as balance laws, for example, the conservation of
energy is often called the balance of energy.
Material Time Derivative of an Integral and Reynolds’ Transport Theorem
The material time derivative of an integral is the rate of change of an integral on a material
domain. A material domain moves with the material, so that the material points on the
boundary remain on the boundary and no mass flux occurs across the boundaries. A material
domain is analogous to a Lagrangian mesh; a Lagrangian element or group of Lagrangian elements is a nice example of a material domain. The various forms for material time derivatives
of integrals are called Reynolds’ transport theorem.
The material time derivative of an integral is defined by
\[\frac{\mathrm{D} }{\mathrm{D} t}\int\limits_{\Omega }^{}f(\mathbf{x},t)\mathrm{d}\Omega
=\lim_{\Delta t \to 0}\cfrac{1}{\Delta t }\left ( \int\limits_{\Omega_{\tau+\Delta t} }f(\mathbf{x},{\tau+\Delta t})\mathrm{d}\Omega-\int\limits_{\Omega_{\tau} }f(\mathbf{x},\tau )\mathrm{d}\Omega \right )\]
where \(\Omega_{\tau}\)
t is the spatial domain at time \({\tau}\) and \(\Omega_{\tau+\Delta t}\) is the spatial domain occupied by the same
material points at time \({\tau+\Delta t}\). The notation on the left-hand side is a little confusing because it
appears to refer to a single spatial domain. However, in this notation, which is standard, the material derivative on the integral implies that the domain Ω is a material domain. We now
transform both integrals on the RHS to the reference domain:
\[\frac{\mathrm{D} }{\mathrm{D} t}\int\limits_{\Omega }f(\mathbf{x},t)\mathrm{d}\Omega
=\lim_{\Delta t \to 0}\cfrac{1}{\Delta t }\left ( \int\limits_{\Omega_{0} }f(\mathbf{X},{\tau+\Delta t})J(\mathbf{X},{\tau+\Delta t})\mathrm{d}\Omega_{0}-\int\limits_{\Omega_{0} }f(\mathbf{X},\tau )J(\mathbf{X},\tau )\mathrm{d}\Omega_{0} \right )\]
With this change in the domain of integration, \({f}\) becomes a function of the material coordinates, that is, \(f(\mathbf{\Phi}(\mathbf{X},t),t)\equiv f\circ \mathbf{\Phi}\).
Since the domain of integration is now independent of time, we can pull the limit operation
inside the integral and take the limit, which yields
\[\frac{\mathrm{D} }{\mathrm{D} t}\int\limits_{\Omega }f(\mathbf{x},t)\mathrm{d}\Omega
=\int\limits_{\Omega_{0} }\frac{\partial }{\partial t}[f(\mathbf{X},t)J(\mathbf{X},t)] \mathrm{d}\Omega_{0}\]
The partial derivative with respect to time in the integrand is a material time derivative since
the independent space variables are the material coordinates. We next use the product rule for
derivatives on the previous:
\[\begin{split}\begin{align}
\frac{\mathrm{D} }{\mathrm{D} t}\int\limits_{\Omega }f(\mathbf{x},t)\mathrm{d}\Omega
=\int\limits_{\Omega_{0} }\frac{\partial }{\partial t}[f(\mathbf{X},t)J(\mathbf{X},t)] \mathrm{d}\Omega_{0}\\
=\int\limits_{\Omega_{0} }(\frac{\partial f(\mathbf{X},t)}{\partial t}J(\mathbf{X},t)+f(\mathbf{X},t)\frac{\partial J(\mathbf{X},t)}{\partial t}) \mathrm{d}\Omega_{0}\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\frac{\mathrm{D} }{\mathrm{D} t}\int\limits_{\Omega }f(\mathbf{x},t)\mathrm{d}\Omega
=\int\limits_{\Omega_{0} }\frac{\partial }{\partial t}[f(\mathbf{X},t)J(\mathbf{X},t)] \mathrm{d}\Omega_{0}\\
=\int\limits_{\Omega_{0} }(\frac{\partial f(\mathbf{X},t)}{\partial t}J(\mathbf{X},t)+f(\mathbf{X},t)\frac{\partial J(\mathbf{X},t)}{\partial t}) \mathrm{d}\Omega_{0}\\
=\int\limits_{\Omega_{0} }(\frac{\partial f(\mathbf{X},t)}{\partial t}J(\mathbf{X},t)+f(\mathbf{X},t)J(\mathbf{X},t)\frac{\partial v_{k}}{\partial x_{k}}) \mathrm{d}\Omega_{0}\\
\end{align}\end{split}\]
We can now transform the RHS integral to the current domain and change the
independent variables to an Eulerian description, which gives
\[\begin{split}\begin{align}
\frac{\mathrm{D} }{\mathrm{D} t}\int\limits_{\Omega }f(\mathbf{x},t)\mathrm{d}\Omega
=\int\limits_{\Omega }(\frac{D f(\mathbf{x},t)}{D t}+f(\mathbf{x},t)\frac{\partial v_{k}}{\partial x_{k}}) \mathrm{d}\Omega\\
\end{align}\end{split}\]
where we have used \({D f(\mathbf{x},t)}/{D t}\equiv \partial f(\mathbf{X},t)/\partial t\). This is one form of
Reynolds’ transport theorem.
\[\begin{split}\cfrac{\mathrm{D} f}{\mathrm{D} t}=\cfrac{\partial f}{\partial t}+v_{i} \cfrac{\partial f}{\partial x_{i}}=\cfrac{\partial f}{\partial t}+\mathbf{v} \cdot \nabla f=\cfrac{\partial f}{\partial t}+\mathbf{v} \cdot \operatorname{grad} f \\\end{split}\]
\[\begin{split}\begin{array}{l}
\cfrac{\mathrm{D} f(\mathbf{x},t)}{\mathrm{D} t}&=\cfrac{\partial f(\mathbf{x},t)}{\partial t}+v_{i}(\mathbf{x},t) \cfrac{\partial f(\mathbf{x},t)}{\partial x_{i}}\\
&=\cfrac{\partial f(\mathbf{x},t)}{\partial t}+\mathbf{v}(\mathbf{x},t) \cdot \nabla f(\mathbf{x},t)\\
&=\cfrac{\partial f(\mathbf{x},t)}{\partial t}+\mathbf{v}(\mathbf{x},t) \cdot \operatorname{grad} f(\mathbf{x},t) \\
\end{array}\end{split}\]
\[\begin{split}\begin{align}
\frac{\mathrm{D} }{\mathrm{D} t}\int\limits_{\Omega }f(\mathbf{x},t)\mathrm{d}\Omega
&=\int\limits_{\Omega }(\frac{D f(\mathbf{x},t)}{D t}+f(\mathbf{x},t)\frac{\partial v_{k}}{\partial x_{k}}) \mathrm{d}\Omega\\
&=\int\limits_{\Omega }(\cfrac{\partial f(\mathbf{x},t)}{\partial t}+v_{k}(\mathbf{x},t) \cfrac{\partial f(\mathbf{x},t)}{\partial x_{k}}+f(\mathbf{x},t)\frac{\partial v_{k}}{\partial x_{k}}) \mathrm{d}\Omega\\
&=\int\limits_{\Omega }(\cfrac{\partial f(\mathbf{x},t)}{\partial t}+\cfrac{\partial (v_{k}(\mathbf{x},t)f(\mathbf{x},t))}{\partial x_{k}}) \mathrm{d}\Omega\\
\end{align}\end{split}\]
which can be written in tensor form as
\[\begin{split}\begin{align}
\frac{\mathrm{D} }{\mathrm{D} t}\int\limits_{\Omega }f(\mathbf{x},t)\mathrm{d}\Omega
&=\int\limits_{\Omega }(\cfrac{\partial f(\mathbf{x},t)}{\partial t}+\mathrm{div}\ (\mathbf{v}(\mathbf{x},t)\cdot f(\mathbf{x},t)) \mathrm{d}\Omega\\
&=\int\limits_{\Omega }(\cfrac{\partial f(\mathbf{x},t)}{\partial t}+\nabla\cdot(\mathbf{v}(\mathbf{x},t)\cdot f(\mathbf{x},t)) \mathrm{d}\Omega\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\frac{\mathrm{D} }{\mathrm{D} t}\int\limits_{\Omega }f(\mathbf{x},t)\mathrm{d}\Omega
&=\int\limits_{\Omega }(\cfrac{\partial f(\mathbf{x},t)}{\partial t}) \mathrm{d}\Omega
+\int\limits_{\Omega }(\nabla\cdot(\mathbf{v}(\mathbf{x},t)\cdot f(\mathbf{x},t)) \mathrm{d}\Omega\\
&=\int\limits_{\Omega }(\cfrac{\partial f(\mathbf{x},t)}{\partial t}) \mathrm{d}\Omega
+\int\limits_{\Gamma }f(\mathbf{x},t)(\mathbf{v}(\mathbf{x},t)\cdot \mathbf{n}(\mathbf{x},t)) \mathrm{d}\Gamma \\
&=\int\limits_{\Omega }(\cfrac{\partial f(\mathbf{x},t)}{\partial t}) \mathrm{d}\Omega
+\int\limits_{\Gamma }f(\mathbf{x},t)({v}_{k}(\mathbf{x},t){n}_{k}(\mathbf{x},t)) \mathrm{d}\Gamma \\
\end{align}\end{split}\]
ALE Form of Conservation Equations
To serve as an introduction to the discussion of ALE finite element and finite volume models,
we establish in this section the differential and integral forms of the conservation equations for
mass, momentum, and energy.
Differential forms
The ALE differential form of the conservation equations for mass, momentum, and energy are
readily obtained from the corresponding well-known Eulerian forms
\[\begin{split}\begin{align}
&Mass: &\frac{\mathrm{d} \rho}{\mathrm{d} t} &= \left.\frac{\partial \rho}{\partial t}\right|_{\mathbf{x}}+\mathbf{v} \cdot \nabla \rho = -\rho {\nabla} \cdot \mathbf{v} \\
&Momentum: &\rho \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t} &= \rho\left(\left.\frac{\partial \mathbf{v}}{\partial t}\right|_{\mathbf{x}}+(\mathbf{v} \cdot {\nabla}) \mathbf{v}\right) = {\nabla} \cdot [\boldsymbol{\sigma}^{\text{T}}]+\rho \mathbf{b} \\
&Energy: &\rho \frac{\mathrm{d} E}{\mathrm{~d} t} &= \rho\left(\left.\frac{\partial E}{\partial t}\right|_{\mathbf{x}}+\mathbf{v} \cdot \nabla E\right) = \nabla \cdot(\boldsymbol{\sigma} \cdot \mathbf{v})-\nabla\cdot\mathbf{q}+\mathbf{v} \cdot \rho \mathbf{b}
\end{align}\end{split}\]
Conservation forms
\[\begin{split}\begin{align}
&Mass: &\cfrac{\partial\rho}{\partial t}\quad+\text{div }(\rho\mathbf{v})\quad\quad=&0\\
&Momentum: & \cfrac{\partial(\rho\mathbf{v})}{\partial t}+\text{div }(\rho\mathbf{v}\otimes\mathbf{v})=& \text{div }\boldsymbol\sigma +\rho \mathbf{b}\\
&Energy: & \cfrac{\partial (\rho E)}{\partial t}+\text{div } \left((\rho E)\mathbf{v}\right)=&\text{div }(\boldsymbol{\sigma}\cdot\mathbf{v})-\text{div }\mathbf{ q}+\mathbf{v}\cdot\rho \mathbf{b}+\rho s \\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
&Mass: &\cfrac{\partial\rho}{\partial t}\quad+\text{div }(\rho\mathbf{v})\quad\quad=&0\\
&Momentum: &\cfrac{\partial(\rho\mathbf{v})}{\partial t}+\text{div }(\rho\mathbf{v}\otimes\mathbf{v})=& \text{div }\boldsymbol\tau-\text{grad }p+\rho \mathbf{b}\\
&Energy: &\cfrac{\partial (\rho E)}{\partial t}+\text{div } \left((\rho H)\mathbf{v}\right)=&\text{div }(\boldsymbol{\tau}\cdot\mathbf{v})-\text{div }\mathbf{ q}+\mathbf{v}\cdot\rho \mathbf{b}+\rho s \\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
&Mass: &\cfrac{\partial\rho}{\partial t}\quad+\nabla\cdot(\rho\mathbf{v})\quad\quad=&0\\
&Momentum: & \cfrac{\partial(\rho\mathbf{v})}{\partial t}+\nabla[(\rho\mathbf{v}\otimes\mathbf{v})^{\text{T}}]=& \nabla[\boldsymbol\sigma^{\text{T}}] +\rho \mathbf{b}\\
&Energy: & \cfrac{\partial (\rho E)}{\partial t}+\nabla\cdot \left((\rho E)\mathbf{v}\right)=&\nabla\cdot(\boldsymbol{\sigma}\cdot\mathbf{v})-\nabla\cdot\mathbf{ q}+\mathbf{v}\cdot\rho \mathbf{b}+\rho s \\
\end{align}\end{split}\]
Mass Conservation
\[\begin{split}\begin{align}
\cfrac{\text{d}f}{\text{d}t}&=\cfrac{\partial f}{\partial t}+\mathbf{v}\cdot (\text{grad }f)\\
&=\cfrac{\partial f}{\partial t}+\mathbf{v}\cdot (\nabla f)\\
&=\cfrac{\partial f}{\partial t}+(\mathbf{v}\cdot \nabla) f\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\cfrac{\text{d}\rho}{\text{d}t}&=\cfrac{\partial \rho}{\partial t}+\mathbf{v}\cdot (\text{grad }\rho)\\
&=\cfrac{\partial \rho}{\partial t}+\mathbf{v}\cdot (\nabla \rho)\\
&=\cfrac{\partial \rho}{\partial t}+(\mathbf{v}\cdot \nabla) \rho\\
\end{align}\end{split}\]
\[\cfrac{\text{d}\rho}{\text{d}t}+\rho\text{div }\mathbf{v}=0\]
\[\begin{split}\cfrac{\text{d}\rho}{\text{d}t}=\cfrac{\partial \rho}{\partial t}+(\mathbf{v}\cdot \nabla) \rho=-\rho\text{div }\mathbf{v}\\\end{split}\]
\[\begin{split}\cfrac{\text{d}\rho}{\text{d}t}=\cfrac{\partial \rho}{\partial t}+(\mathbf{v}\cdot \nabla) \rho=-\rho\nabla\cdot\mathbf{v}\\\end{split}\]
\[\begin{split}\cfrac{\partial\rho}{\partial t}+\text{div }(\rho\mathbf{v})=0\\\end{split}\]
Conservation of Linear Momentum
\[\begin{split}\begin{align}
\cfrac{\text{d} \mathbf{v}}{\text{d} t} & = \cfrac{\partial \mathbf{v}}{\partial t}+[(\text{grad }\mathbf{v})][\mathbf{v}]\\
\cfrac{\text{d} \mathbf{v}}{\text{d} t} & = \cfrac{\partial \mathbf{v}}{\partial t}+[\nabla \mathbf{v}]^{\text{T}}[\mathbf{v}] \\
\cfrac{\text{d} \mathbf{v}}{\text{d} t} & = \cfrac{\partial \mathbf{v}}{\partial t}+ (\mathbf{v}\cdot \nabla)\mathbf{v} \\
\cfrac{\text{d} \boldsymbol{\alpha}}{\text{d} t} & = \cfrac{\partial \boldsymbol{\alpha}}{\partial t}+ (\mathbf{v}\cdot \nabla)\boldsymbol{\alpha} \\
\end{align}\end{split}\]
\[\begin{split}\cfrac{\text{d}}{\text{d} t}\int\limits_{\Omega}\rho\mathbf{v}\text{d}{\Omega}
=\int\limits_{\Omega}\rho\cfrac{\text{d}\mathbf{v}}{\text{d} t}\text{d}{\Omega}\\\end{split}\]
\[\rho\cfrac{\text{d}\mathbf{v}}{\text{d} t}=\nabla\cdot([\boldsymbol{\sigma}]^{\text{T}})+\rho\mathbf{b}\equiv \text{div}\boldsymbol\sigma+\rho\mathbf{b}\]
\[\begin{split}\rho\cfrac{\text{d}\mathbf{v}}{\text{d}t}=\rho\left(\cfrac{\partial \mathbf{v}}{\partial t}+(\mathbf{v}\cdot \nabla) (\mathbf{v})\right)
= \nabla\cdot([\boldsymbol{\sigma}]^{\text{T}})+\rho\mathbf{b}\equiv \text{div}\boldsymbol\sigma+\rho\mathbf{b}\\\end{split}\]
\[\cfrac{\partial(\rho\mathbf{v})}{\partial t}+\text{div }(\rho\mathbf{v}\otimes\mathbf{v})
= \text{div }\boldsymbol\sigma +\rho \mathbf{b}\]
Conservation of Energy
\[\begin{split}\begin{array}{c}
\displaystyle \cfrac{\text{d}}{\text{d} t}\int\limits_{\Omega}(\rho E)\text{d}\Omega=\int\limits_{\Omega}\left(\cfrac{\text{d}(\rho E)}{\text{d} t}+(\rho E)\cfrac{\partial v_{i}}{\partial x_{i}}\right)\text{d}\Omega \\
\displaystyle \cfrac{\text{d}(\rho E)}{\text{d} t}= E\cfrac{\text{d}(\rho)}{\text{d} t}+\rho \cfrac{\text{d}( E)}{\text{d} t}\\
\displaystyle \cfrac{\text{d}(\rho E)}{\text{d} t}= -E\rho\text{div } \mathbf{v}+\rho \cfrac{\text{d}( E)}{\text{d} t}\\
\displaystyle \cfrac{\text{d}(\rho E)}{\text{d} t}+(\rho E)\text{div } \mathbf{v}= \rho \cfrac{\text{d}( E)}{\text{d} t}\\
\displaystyle \cfrac{\text{d}}{\text{d} t}\int\limits_{\Omega}(\rho E)\text{d}\Omega=\int\limits_{\Omega}\left(\rho \cfrac{\text{d}( E)}{\text{d} t}\right)\text{d}\Omega \\
\end{array}\end{split}\]
Generally, there are
\[\begin{split}\cfrac{\text{d}}{\text{d} t}\int\limits_{\Omega}(\rho f)\text{d}\Omega=\int\limits_{\Omega}\left(\rho \cfrac{\text{d}( f)}{\text{d} t}\right)\text{d}\Omega \\\end{split}\]
\[\begin{split}\begin{align}
\cfrac{\text{d}E}{\text{d}t}&=\cfrac{\partial E}{\partial t}+\mathbf{v}\cdot (\text{grad }E)\\
&=\cfrac{\partial E}{\partial t}+\mathbf{v}\cdot (\nabla E)\\
&=\cfrac{\partial E}{\partial t}+(\mathbf{v}\cdot \nabla) E\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\rho\cfrac{\text{d}E}{\text{d}t}&=\rho\cfrac{\partial E}{\partial t}+\rho\mathbf{v}\cdot (\text{grad }E)\\
&=\rho\cfrac{\partial E}{\partial t}+\rho\mathbf{v}\cdot (\nabla E)\\
&=\rho\cfrac{\partial E}{\partial t}+(\mathbf{v}\cdot \nabla) (\rho E)\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\rho\cfrac{\text{d}E}{\text{d}t}
&=\rho(\cfrac{\partial E}{\partial t}+(\mathbf{v}\cdot \nabla) E)=
\text{div }(\boldsymbol{\sigma}\cdot\mathbf{v})-\text{div }\mathbf{ q}+\mathbf{v}\cdot\rho \mathbf{b}+\rho s \\\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\cfrac{\text{d}}{\text{d}t}\int\limits_{\Omega}(\rho E)\text{d}\Omega
& = \int\limits_{\Omega}\left(\cfrac{\partial (\rho E)}{\partial t}+\text{div } \left((\rho E)\mathbf{v}\right)\right)\text{d}\Omega \\
& = \int\limits_{\Omega}(\text{div }(\boldsymbol{\sigma}\cdot\mathbf{v})-\text{div }\mathbf{ q}+\mathbf{v}\cdot\rho \mathbf{b}+\rho s)\text{d}\Omega\\
\end{align}\end{split}\]
where \(\rho\) is the mass density, \(\mathbf{v}\) is the material velocity vector, \(\boldsymbol{\sigma}\) denotes the Cauchy stress
tensor, \(\mathbf{b}\) is the specific body force vector, and E is the specific total energy. Only mechanical
energies are considered in the above form of the energy equation. Note that the stress term in
the same equation can be rewritten in the form
\[{\nabla} \cdot(\boldsymbol{\sigma} \cdot \mathbf{v})=\frac{\partial\left(\sigma_{i j} v_{j}\right)}{\partial x_{i}}=\frac{\partial \sigma_{i j}}{\partial x_{i}} v_{j}+\sigma_{i j} \frac{\partial v_{j}}{\partial x_{i}}=({\nabla} \cdot \boldsymbol{\sigma}) \cdot \mathbf{v}+\boldsymbol{\sigma}: {\nabla} \mathbf{v}\]
where \(\nabla \mathbf{v}\) is the spatial velocity gradient.
\[\begin{split}\nabla \rho=\begin{bmatrix}
\cfrac{\partial \rho}{\partial x}\\
\cfrac{\partial \rho}{\partial y}\\
\cfrac{\partial \rho}{\partial x}
\end{bmatrix}
=\begin{bmatrix}
\cfrac{\partial \rho}{\partial x_{1}}\\
\cfrac{\partial \rho}{\partial x_{2}}\\
\cfrac{\partial \rho}{\partial x_{3}}
\end{bmatrix}
=\cfrac{\partial \rho}{\partial x}\mathbf{i}
+\cfrac{\partial \rho}{\partial y}\mathbf{j}
+\cfrac{\partial \rho}{\partial z}\mathbf{k}
=\cfrac{\partial \rho}{\partial x_{1}}\mathbf{e_{1}}
+\cfrac{\partial \rho}{\partial x_{2}}\mathbf{e_{2}}
+\cfrac{\partial \rho}{\partial x_{3}}\mathbf{e_{3}}\end{split}\]
All one has to do to obtain the ALE form of the above conservation equations is to replace
in the various convective terms, the material velocity \(\mathbf{v}\) with the convective velocity \(\mathbf{c}=\mathbf{v}-\hat {\mathbf{v}}\)
and \(\hat {\mathbf{v}}\) is the mesh velocity.
The result is
\[\begin{split}\begin{align}
&Mass: &\frac{\mathrm{d} \rho}{\mathrm{d} t} &= \left.\frac{\partial \rho}{\partial t}\right|_{\boldsymbol\chi}+\mathbf{c} \cdot \nabla \rho = -\rho {\nabla} \cdot \mathbf{v} \\
&Momentum: &\rho \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t} &= \rho\left(\left.\frac{\partial \mathbf{v}}{\partial t}\right|_{\boldsymbol\chi}+(\mathbf{c} \cdot {\nabla}) \mathbf{v}\right) = {\nabla} \cdot \boldsymbol{\sigma}+\rho \mathbf{b} \\
&Energy: &\rho \frac{\mathrm{d} E}{\mathrm{~d} t} &= \rho\left(\left.\frac{\partial E}{\partial t}\right|_{\boldsymbol\chi}+\mathbf{c} \cdot \nabla E\right) = \nabla \cdot(\boldsymbol{\sigma} \cdot \mathbf{v})-\nabla\cdot\mathbf{q}+\mathbf{v} \cdot \rho \mathbf{b} \\
\end{align}\end{split}\]
ALE Mass Conservation
\[\begin{split}\cfrac{\text{d} f}{\text{d} t}=\cfrac{\partial f}{\partial t}\Bigg|_{\boldsymbol{\xi}}
=\cfrac{\partial f}{\partial t}\Bigg|_{\boldsymbol{\chi}}+\cfrac{\partial f}{\partial \mathbf{x}}\cdot \mathbf{c}
=\cfrac{\partial f}{\partial t}\Bigg|_{\boldsymbol{\chi}}+\mathbf{c} \cdot \nabla {f}\\\end{split}\]
\[\begin{split}\cfrac{\text{d} \rho}{\text{d} t}=\cfrac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol{\xi}}
=\cfrac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol{\chi}}+\cfrac{\partial \rho}{\partial \mathbf{x}}\cdot \mathbf{c}
=\cfrac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol{\chi}}+\mathbf{c} \cdot \nabla {\rho}\\\end{split}\]
\[\begin{split}\cfrac{\text{d} \rho}{\text{d} t}=\cfrac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol{\chi}}+\mathbf{c} \cdot \nabla {\rho}\\\end{split}\]
\[\cfrac{\text{d} \rho}{\text{d} t}=\cfrac{\partial \rho}{\partial t}\Bigg|_{\mathbf{x}}+\mathbf{v} \cdot \nabla {\rho}
=\frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}+\mathbf{c} \cdot \nabla \rho = -\rho {\nabla} \cdot \mathbf{v}\]
\[\frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}+\mathbf{c} \cdot \nabla \rho = -\rho {\nabla} \cdot \mathbf{v}\]
Conservation forms
\[\begin{split}\begin{array}{c}
\displaystyle \frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}+\mathbf{c} \cdot \nabla \rho +\rho {\nabla} \cdot \mathbf{v} = 0\\
\displaystyle \frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}+\mathbf{c} \cdot \nabla \rho +\rho {\nabla} \cdot (\mathbf{v}-\mathbf{\hat{v}}+\mathbf{\hat{v}}) = 0\\
\displaystyle \frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}+\mathbf{c} \cdot \nabla \rho +\rho {\nabla} \cdot (\mathbf{c}+\mathbf{\hat{v}}) = 0\\
\displaystyle \frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}+{\nabla}\cdot(\rho\mathbf{c})+\rho {\nabla} \cdot (\mathbf{\hat{v}}) = 0
\end{array}\end{split}\]
\[\begin{split}\begin{array}{c}
\displaystyle \frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}+\mathbf{c} \cdot \nabla \rho +\rho {\nabla} \cdot \mathbf{v} = 0\\
\displaystyle \frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}+(\mathbf{v}-\mathbf{\hat{v}}) \cdot \nabla \rho +\rho {\nabla} \cdot (\mathbf{v}) = 0\\
\displaystyle \frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}+\mathbf{v}\cdot \nabla \rho -\mathbf{\hat{v}}\cdot \nabla \rho+\rho {\nabla} \cdot (\mathbf{v}) = 0\\
\displaystyle \frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}+{\nabla}\cdot(\rho\mathbf{v})-\mathbf{\hat{v}}\cdot \nabla \rho = 0
\end{array}\end{split}\]
\[\frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}+{\nabla}\cdot(\rho\mathbf{c})+\rho {\nabla} \cdot (\mathbf{\hat{v}}) = 0\]
\[\frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}+{\nabla}\cdot(\rho\mathbf{v})-\mathbf{\hat{v}}\cdot \nabla \rho = 0\]
\[\frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}
+\frac{\partial (\rho c_{1})}{\partial x_{1}}
+\frac{\partial (\rho c_{2})}{\partial x_{2}}
+\frac{\partial (\rho c_{3})}{\partial x_{3}}
+\rho(\frac{\partial \hat{v}_{1}}{\partial x_{1}}
+\frac{\partial \hat{v}_{2}}{\partial x_{2}}
+\frac{\partial \hat{v}_{3}}{\partial x_{3}})
= 0\]
\[\frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}
+\frac{\partial (\rho v_{1})}{\partial x_{1}}
+\frac{\partial (\rho v_{2})}{\partial x_{2}}
+\frac{\partial (\rho v_{3})}{\partial x_{3}}
+(\hat{v}_{1}\frac{\partial \rho}{\partial x_{1}}
+\hat{v}_{2}\frac{\partial \rho}{\partial x_{2}}
+\hat{v}_{3}\frac{\partial \rho}{\partial x_{3}})
= 0\]
ALE Conservation of Linear Momentum
\[\begin{split}\cfrac{\text{d} v_{1}}{\text{d} t}=\cfrac{\partial v_{1}}{\partial t}\Bigg|_{\boldsymbol{\xi}}
=\cfrac{\partial v_{1}}{\partial t}\Bigg|_{\boldsymbol{\chi}}+\cfrac{\partial f}{\partial \mathbf{x}}\cdot \mathbf{c}
=\cfrac{\partial v_{1}}{\partial t}\Bigg|_{\boldsymbol{\chi}}+(\mathbf{c} \cdot \nabla ){v_{1}}\\\end{split}\]
\[\begin{split}\begin{array}{c}
\cfrac{\text{d} v_{1}}{\text{d} t}=\cfrac{\partial v_{1}}{\partial t}\Bigg|_{\boldsymbol{\xi}}
=\cfrac{\partial v_{1}}{\partial t}\Bigg|_{\boldsymbol{\chi}}+\cfrac{\partial v_{1}}{\partial \mathbf{x}}\cdot \mathbf{c}
=\cfrac{\partial v_{1}}{\partial t}\Bigg|_{\boldsymbol{\chi}}+(\mathbf{c} \cdot \nabla ){v_{1}}\\
\cfrac{\text{d} v_{2}}{\text{d} t}=\cfrac{\partial v_{2}}{\partial t}\Bigg|_{\boldsymbol{\xi}}
=\cfrac{\partial v_{2}}{\partial t}\Bigg|_{\boldsymbol{\chi}}+\cfrac{\partial v_{2}}{\partial \mathbf{x}}\cdot \mathbf{c}
=\cfrac{\partial v_{2}}{\partial t}\Bigg|_{\boldsymbol{\chi}}+(\mathbf{c} \cdot \nabla ){v_{2}}\\
\cfrac{\text{d} v_{3}}{\text{d} t}=\cfrac{\partial v_{3}}{\partial t}\Bigg|_{\boldsymbol{\xi}}
=\cfrac{\partial v_{3}}{\partial t}\Bigg|_{\boldsymbol{\chi}}+\cfrac{\partial v_{3}}{\partial \mathbf{x}}\cdot \mathbf{c}
=\cfrac{\partial v_{3}}{\partial t}\Bigg|_{\boldsymbol{\chi}}+(\mathbf{c} \cdot \nabla ){v_{3}}\\
\end{array}\end{split}\]
\[\begin{split}\cfrac{\text{d} \mathbf{v}}{\text{d} t}=\cfrac{\partial \mathbf{v}}{\partial t}\Bigg|_{\boldsymbol{\xi}}
=\cfrac{\partial \mathbf{v}}{\partial t}\Bigg|_{\boldsymbol{\chi}}+\cfrac{\partial \mathbf{v}}{\partial \mathbf{x}}\cdot \mathbf{c}
=\cfrac{\partial \mathbf{v}}{\partial t}\Bigg|_{\boldsymbol{\chi}}+(\mathbf{c} \cdot \nabla ){\mathbf{v}}\\\end{split}\]
\[\begin{split}\rho\cfrac{\text{d} \mathbf{v}}{\text{d} t}=\rho\cfrac{\partial \mathbf{v}}{\partial t}\Bigg|_{\boldsymbol{\xi}}
=\rho\left(\cfrac{\partial \mathbf{v}}{\partial t}\Bigg|_{\boldsymbol{\chi}}+\cfrac{\partial \mathbf{v}}{\partial \mathbf{x}}\cdot \mathbf{c}\right)
=\rho\left(\cfrac{\partial \mathbf{v}}{\partial t}\Bigg|_{\boldsymbol{\chi}}+(\mathbf{c} \cdot \nabla ){\mathbf{v}}\right)\\\end{split}\]
\[\begin{split}\rho\cfrac{\text{d} \mathbf{v}}{\text{d} t}
=\rho\left(\cfrac{\partial \mathbf{v}}{\partial t}\Bigg|_{\boldsymbol{\chi}}+(\mathbf{c} \cdot \nabla ){\mathbf{v}}\right)\\\end{split}\]
\[\begin{split}\rho\cfrac{\text{d} \mathbf{v}}{\text{d} t}
=\rho\left(\cfrac{\partial \mathbf{v}}{\partial t}\Bigg|_{\boldsymbol{\chi}}+(\mathbf{c} \cdot \nabla ){\mathbf{v}}\right)
=\text{div }\boldsymbol{\sigma}+\rho \mathbf{b} \\\end{split}\]
\[\begin{split}\rho\cfrac{\text{d} \mathbf{v}}{\text{d} t}
=\rho\left(\cfrac{\partial \mathbf{v}}{\partial t}\Bigg|_{\boldsymbol{\chi}}+(\mathbf{c} \cdot \nabla ){\mathbf{v}}\right)
=\nabla \cdot\left[\boldsymbol{\sigma}^{\mathrm{T}}\right]+\rho \mathbf{b} \\\end{split}\]
Conservation form
\[\cfrac{\text{d}}{\text{d} t}\int\limits_{\Omega}(\rho f)\text{d}\Omega=\int\limits_{\Omega}\left(\cfrac{\text{d}(\rho f)}{\text{d} t}+(\rho f)\cfrac{\partial v_{i}}{\partial x_{i}}\right)\text{d}\Omega\]
\[\cfrac{\text{d}}{\text{d} t}\int\limits_{\Omega}(\rho \mathbf{v})\text{d}\Omega=\int\limits_{\Omega}\left(\cfrac{\text{d}(\rho \mathbf{v})}{\text{d} t}+(\rho \mathbf{v})\cfrac{\partial v_{i}}{\partial x_{i}}\right)\text{d}\Omega\]
\[\cfrac{\text{d}}{\text{d} t}\int\limits_{\Omega}(\rho \mathbf{v})\text{d}\Omega=\int\limits_{\Omega}\left(\cfrac{\text{d}(\rho \mathbf{v})}{\text{d} t}+(\rho \mathbf{v})(\text{div }\mathbf{v})\right)\text{d}\Omega\]
\[\begin{split}\cfrac{\text{d} (\rho\mathbf{v})}{\text{d} t}=\cfrac{\partial (\rho\mathbf{v})}{\partial t}\Bigg|_{\boldsymbol{\xi}}
=\cfrac{\partial (\rho\mathbf{v})}{\partial t}\Bigg|_{\boldsymbol{\chi}}+\cfrac{\partial (\rho\mathbf{v})}{\partial \mathbf{x}}\cdot \mathbf{c}
=\cfrac{\partial (\rho\mathbf{v})}{\partial t}\Bigg|_{\boldsymbol{\chi}}+(\mathbf{c} \cdot \nabla )(\rho\mathbf{v})\\\end{split}\]
\[\cfrac{\text{d}(\rho \mathbf{v})}{\text{d} t}+(\rho \mathbf{v})(\text{div }\mathbf{v})=\cfrac{\partial (\rho\mathbf{v})}{\partial t}\Bigg|_{\boldsymbol{\chi}}+(\mathbf{c} \cdot \nabla )(\rho\mathbf{v})+(\rho \mathbf{v})(\text{div }\mathbf{v})\]
\[\text{div}(\mathbf{a}\otimes \mathbf{b})=[\text{grad}(\mathbf{a})]\cdot\mathbf{b}+\mathbf{a}\text{ div}(\mathbf{b})\]
Let \(\mathbf{a}=\rho\mathbf{v}\), \(\mathbf{v}=\mathbf{v}\), then
\[\begin{split}\text{div}((\rho\mathbf{v})\otimes \mathbf{v})=[\text{grad}(\rho\mathbf{v})]\cdot\mathbf{v}+(\rho\mathbf{v})\text{ div}(\mathbf{v})\\\end{split}\]
\[[\text{grad}(\rho\mathbf{v})]\cdot\mathbf{v}=(\mathbf{v} \cdot \nabla )(\rho\mathbf{v})\]
\[\frac{\partial (\rho\mathbf{v})}{\partial t}\Bigg|_{\boldsymbol\chi}
=\rho\frac{\partial (\mathbf{v})}{\partial t}\Bigg|_{\boldsymbol\chi}
+\mathbf{v}\frac{\partial (\rho)}{\partial t}\Bigg|_{\boldsymbol\chi}\]
\[\rho\frac{\partial (\mathbf{v})}{\partial t}\Bigg|_{\boldsymbol\chi}=\frac{\partial (\rho\mathbf{v})}{\partial t}\Bigg|_{\boldsymbol\chi}-\mathbf{v}\frac{\partial (\rho)}{\partial t}\Bigg|_{\boldsymbol\chi}\]
\[\rho\frac{\partial (\mathbf{v})}{\partial t}\Bigg|_{\boldsymbol\chi}+(\rho \mathbf{c}\cdot\nabla)\mathbf{v}
=\frac{\partial (\rho\mathbf{v})}{\partial t}\Bigg|_{\boldsymbol\chi}
-\mathbf{v}\frac{\partial (\rho)}{\partial t}\Bigg|_{\boldsymbol\chi}
+(\rho \mathbf{c}\cdot\nabla)\mathbf{v}\]
\[\begin{split}\frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}=-\mathbf{c} \cdot \nabla \rho -\rho {\nabla} \cdot \mathbf{v} \\\end{split}\]
\[\mathbf{v}\frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}=-\mathbf{v}(\mathbf{c} \cdot \nabla \rho) -(\rho\mathbf{v})( {\nabla} \cdot \mathbf{v})\]
\[\rho\frac{\partial (\mathbf{v})}{\partial t}\Bigg|_{\boldsymbol\chi}+(\rho \mathbf{c}\cdot\nabla)\mathbf{v}
=\frac{\partial (\rho\mathbf{v})}{\partial t}\Bigg|_{\boldsymbol\chi}
+\mathbf{v}(\mathbf{c} \cdot \nabla \rho) +(\rho\mathbf{v})( {\nabla} \cdot \mathbf{v})
+(\rho \mathbf{c}\cdot\nabla)\mathbf{v}\]
\[\mathbf{v}(\mathbf{c} \cdot \nabla \rho)+(\rho \mathbf{c}\cdot\nabla)\mathbf{v}
=(\mathbf{c} \cdot \nabla)(\rho\mathbf{v})
=[\text{grad}(\rho\mathbf{v})]\cdot \mathbf{c}\]
\[\rho\frac{\partial (\mathbf{v})}{\partial t}\Bigg|_{\boldsymbol\chi}+(\rho \mathbf{c}\cdot\nabla)\mathbf{v}
=\frac{\partial (\rho\mathbf{v})}{\partial t}\Bigg|_{\boldsymbol\chi}
+(\mathbf{c} \cdot \nabla)(\rho\mathbf{v}) +(\rho\mathbf{v})( {\nabla} \cdot \mathbf{v})\]
\[\begin{split}\begin{align}
&(\mathbf{c} \cdot \nabla)(\rho\mathbf{v}) +(\rho\mathbf{v})( {\nabla} \cdot \mathbf{v})\\ & = c_{j}\cfrac{\partial(\rho v_{i}) }{\partial x_{j}}+(\rho v_{i})\cfrac{\partial( v_{j}) }{\partial x_{j}}\\ & = (v_{j}-\hat{v}_{j})\cfrac{\partial(\rho v_{i}) }{\partial x_{j}}+(\rho v_{i})\cfrac{\partial(v_{j}) }{\partial x_{j}}\\ & = (v_{j})\cfrac{\partial(\rho v_{i}) }{\partial x_{j}}+(\rho v_{i})\cfrac{\partial(v_{j}) }{\partial x_{j}}-\hat{v}_{j}\cfrac{\partial(\rho v_{i}) }{\partial x_{k}}\\ & = \cfrac{\partial(\rho v_{i}v_{j}) }{\partial x_{j}}-\hat{v}_{j}\cfrac{\partial(\rho v_{i}) }{\partial x_{j}}
\end{align}\end{split}\]
\[\begin{split}\begin{align}
&(\mathbf{c} \cdot \nabla)(\rho\mathbf{v}) +(\rho\mathbf{v})( {\nabla} \cdot \mathbf{v})\\
=&(\mathbf{c} \cdot \nabla)(\rho\mathbf{v}) +(\rho\mathbf{v})( {\nabla} \cdot (\mathbf{c}+\mathbf{\hat{v}}))\\
=&\text{div }(\rho\mathbf{v}\otimes\mathbf{c}) +(\rho\mathbf{v})( {\nabla} \cdot (\mathbf{\hat{v}}))\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
&(\mathbf{c} \cdot \nabla)(\rho\mathbf{v}) +(\rho\mathbf{v})( {\nabla} \cdot \mathbf{v})\\
=&((\mathbf{v}-\mathbf{\hat{v}}) \cdot \nabla)(\rho\mathbf{v}) +(\rho\mathbf{v})( {\nabla} \cdot \mathbf{v})\\
=&\text{div }(\rho\mathbf{v}\otimes\mathbf{v}) -(\mathbf{\hat{v}} \cdot \nabla)(\rho\mathbf{v})\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
&(\mathbf{c} \cdot \nabla)(\rho\mathbf{v}) +(\rho\mathbf{v})( {\nabla} \cdot \mathbf{v})\\
=&(\mathbf{c} \cdot \nabla)(\rho\mathbf{v}) +(\rho\mathbf{v})( {\nabla} \cdot (\mathbf{c}+\mathbf{\hat{v}}))\\
=&\text{div }(\rho\mathbf{v}\otimes\mathbf{c}) +(\rho\mathbf{v})( {\nabla} \cdot (\mathbf{\hat{v}}))\\
\end{align}\end{split}\]
\[\begin{split}\cfrac{\partial (\rho\mathbf{v})}{\partial t}\Bigg|_{\boldsymbol{\chi}}
+\text{div }(\rho\mathbf{v}\otimes\mathbf{v}) -(\mathbf{\hat{v}} \cdot \nabla)(\rho\mathbf{v})
=\text{div }\boldsymbol{\sigma}+\rho\mathbf{b}\\\end{split}\]
\[\begin{split}\cfrac{\partial (\rho\mathbf{v})}{\partial t}\Bigg|_{\boldsymbol{\chi}}
+\text{div }(\rho\mathbf{v}\otimes\mathbf{c}) +(\rho\mathbf{v})( {\nabla} \cdot \mathbf{\hat{v}})
=\text{div }\boldsymbol{\sigma}+\rho\mathbf{b}\\\end{split}\]
ALE Conservation of Energy
\[\rho \frac{\mathrm{d} E}{\mathrm{~d} t} = \rho\left(\frac{\partial E}{\partial t}\Bigg|_{\boldsymbol\chi}+(\mathbf{c} \cdot \nabla) E\right) = \nabla \cdot(\boldsymbol{\sigma} \cdot \mathbf{v})+\mathbf{v} \cdot \rho \mathbf{b}\]
Conservation form
\[\rho \frac{\mathrm{d} E}{\mathrm{~d} t} = \rho\left(\frac{\partial E}{\partial t}\Bigg|_{\boldsymbol\chi}+(\mathbf{c} \cdot \nabla) E\right) = \nabla \cdot(\boldsymbol{\sigma} \cdot \mathbf{v})+\mathbf{v} \cdot \rho \mathbf{b}\]
\[\begin{split}\begin{align}
&\displaystyle \rho\frac{\partial E}{\partial t}\Bigg|_{\boldsymbol\chi}+\rho(\mathbf{c} \cdot \nabla) E\\
=& \rho\frac{\partial E}{\partial t}\Bigg|_{\boldsymbol\chi}+E\frac{\partial\rho}{\partial t}\Bigg|_{\boldsymbol\chi}-E\frac{\partial\rho}{\partial t}\Bigg|_{\boldsymbol\chi}
+\rho(\mathbf{c} \cdot \nabla) E \\
=&\frac{\partial (\rho E)}{\partial t}\Bigg|_{\boldsymbol\chi}-E\frac{\partial\rho}{\partial t}\Bigg|_{\boldsymbol\chi}
+\rho(\mathbf{c} \cdot \nabla) E \\
\end{align}\end{split}\]
\[\displaystyle \frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}=-\mathbf{c} \cdot \nabla \rho -\rho {\nabla} \cdot \mathbf{v}\]
\[E\frac{\partial \rho}{\partial t}\Bigg|_{\boldsymbol\chi}=-(E\mathbf{c}) \cdot \nabla \rho -(\rho E )({\nabla} \cdot \mathbf{v})\]
\[\begin{split}\begin{align}
-E\frac{\partial\rho}{\partial t}\Bigg|_{\boldsymbol\chi}+\rho(\mathbf{c} \cdot \nabla) E
& = (E\mathbf{c}) \cdot \nabla \rho +(\rho E )({\nabla} \cdot \mathbf{v})+\rho(\mathbf{c} \cdot \nabla) E\\
& = (\rho E )({\nabla} \cdot \mathbf{v})+(\mathbf{c} \cdot \nabla) (\rho E)
\end{align}\end{split}\]
\[\begin{split}\begin{align}
-E\frac{\partial\rho}{\partial t}\Bigg|_{\boldsymbol\chi}+\rho(\mathbf{c} \cdot \nabla) E
& = (E\mathbf{c}) \cdot \nabla \rho +(\rho E )({\nabla} \cdot \mathbf{v})+\rho(\mathbf{c} \cdot \nabla) E\\
& = (\rho E )({\nabla} \cdot \mathbf{v})+(\mathbf{c} \cdot \nabla) (\rho E)\\
& = (\rho E )({\nabla} \cdot (\mathbf{c}+\mathbf{\hat{v}}))+(\mathbf{c} \cdot \nabla) (\rho E)\\
& = (\rho E )({\nabla} \cdot \mathbf{c})+(\rho E )({\nabla} \cdot \mathbf{\hat{v}})+(\mathbf{c} \cdot \nabla) (\rho E)\\
& = {\nabla} \cdot (\rho E \mathbf{c})+(\rho E )({\nabla} \cdot \mathbf{\hat{v}})\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
-E\frac{\partial\rho}{\partial t}\Bigg|_{\boldsymbol\chi}+\rho(\mathbf{c} \cdot \nabla) E
& = (E\mathbf{c}) \cdot \nabla \rho +(\rho E )({\nabla} \cdot \mathbf{v})+\rho(\mathbf{c} \cdot \nabla) E\\
& = (\rho E )({\nabla} \cdot \mathbf{v})+(\mathbf{c} \cdot \nabla) (\rho E)\\
& = (\rho E )({\nabla} \cdot \mathbf{v})+((\mathbf{v}-\mathbf{\hat{v}}) \cdot \nabla) (\rho E)\\
& = (\rho E )({\nabla} \cdot \mathbf{v})+(\mathbf{v} \cdot \nabla) (\rho E)-(\mathbf{\hat{v}} \cdot \nabla) (\rho E)\\
& = {\nabla} \cdot (\rho E \mathbf{v})+(\mathbf{\hat{v}} \cdot \nabla) (\rho E)\\
\end{align}\end{split}\]
\[\frac{\partial (\rho E)}{\partial t}\Bigg|_{\boldsymbol\chi}+{\nabla} \cdot (\rho E \mathbf{v})+(\mathbf{\hat{v}} \cdot \nabla) (\rho E)
=\nabla \cdot(\boldsymbol{\sigma} \cdot \mathbf{v})+\mathbf{v} \cdot \rho \mathbf{b}\]
\[\frac{\partial (\rho E)}{\partial t}\Bigg|_{\boldsymbol\chi}+{\nabla} \cdot (\rho E \mathbf{c})+(\rho E )({\nabla} \cdot \mathbf{\hat{v}})
=\nabla \cdot(\boldsymbol{\sigma} \cdot \mathbf{v})+\mathbf{v} \cdot \rho \mathbf{b}\]
Navier–Stokes equations
\[\cfrac{\partial \mathbf{Q}}{\partial t}
+\cfrac{\partial \mathbf{E}}{\partial x}
+\cfrac{\partial \mathbf{F}}{\partial y}
+\cfrac{\partial \mathbf{G}}{\partial z}
=\cfrac{\partial \mathbf{E}_{v}}{\partial x}
+\cfrac{\partial \mathbf{F}_{v}}{\partial y}
+\cfrac{\partial \mathbf{G}_{v}}{\partial z}\]
\[\begin{split}\begin{align}
\mathbf{Q}=\begin{bmatrix}
\rho \\
\rho u \\
\rho v \\
\rho w \\
\rho E \\
\end{bmatrix}
\quad
\mathbf{E}=\begin{bmatrix}
\rho u \\
\rho uu+p \\
\rho uv \\
\rho uw \\
\rho uH \\
\end{bmatrix}
\quad
\mathbf{F}=\begin{bmatrix}
\rho v \\
\rho vu \\
\rho vv+p \\
\rho vw \\
\rho vH \\
\end{bmatrix}
\quad
\mathbf{G}=\begin{bmatrix}
\rho w \\
\rho wu \\
\rho wv \\
\rho ww+p \\
\rho wH \\
\end{bmatrix}
\end{align}\end{split}\]
\(E\) is the specific total energy, and \(H\) is the specific total enthalpy
\[E=\frac{1}{\gamma-1} \frac{p}{\rho}+\frac{1}{2} (u^{2}+v^{2}+w^{2})=\frac{1}{\gamma-1} \frac{p}{\rho}+\frac{1}{2} \mathbf{v}^{2}\]
\[H=E+\frac{p}{\rho}\]
\[\begin{split}\mathbf{E}_{v}=\begin{bmatrix}
0 \\
\tau_{xx} \\
\tau_{yx} \\
\tau_{zx} \\
\tau_{vx}-q_{x}\\
\end{bmatrix}
\quad
\mathbf{F}_{v}=\begin{bmatrix}
0 \\
\tau_{xy} \\
\tau_{yy} \\
\tau_{zy} \\
\tau_{vy}-q_{y} \\
\end{bmatrix}
\quad
\mathbf{G}_{v}=\begin{bmatrix}
0 \\
\tau_{xz} \\
\tau_{yz} \\
\tau_{zz} \\
\tau_{vz}-q_{z} \\
\end{bmatrix}\end{split}\]
\[\begin{split}\begin{align}
\tau_{vx}=\tau_{xx}u+\tau_{xy}v+\tau_{xz}w\\
\tau_{vy}=\tau_{yx}u+\tau_{yy}v+\tau_{yz}w\\
\tau_{vz}=\tau_{zx}u+\tau_{zy}v+\tau_{zz}w\\
\end{align}\end{split}\]
\[\begin{split}\mathbf{q}=\begin{bmatrix}
q_{x}\\
q_{y}\\
q_{z}
\end{bmatrix}=\begin{bmatrix}
-k\cfrac{\partial T}{\partial x}\\
-k\cfrac{\partial T}{\partial y}\\
-k\cfrac{\partial T}{\partial z}
\end{bmatrix}\end{split}\]
The heat conductivity \(\kappa\) can be evaluated through the viscosity coefficient \(\mu\) by utilizing the definition of the Prandtl number \(Pr\),
\[\begin{split}Pr=\frac{c_{p}\mu }{\kappa }=\frac{\gamma R \mu}{\kappa (\gamma -1)}\Longrightarrow \kappa= \frac{\gamma R \mu}{Pr(\gamma -1)}\\\end{split}\]
viscous stress tensor:
\[\boldsymbol{\tau} = \lambda (\text{div }\mathbf{v})\mathbf{I}+\mu[(\text{grad }\mathbf{v})+(\text{grad }\mathbf{v})^{\text{T}}]\]
\[\begin{split}\boldsymbol\tau =\begin{bmatrix}
\tau_{xx}& \tau_{xy} & \tau_{xz}\\
\tau_{yx}& \tau_{yy} & \tau_{yz}\\
\tau_{zx}& \tau_{zy} & \tau_{zz}\\
\end{bmatrix}\end{split}\]
\[\text{div }\mathbf{v}=\cfrac{\partial u}{\partial x}+\cfrac{\partial v}{\partial y}+\cfrac{\partial w}{\partial z}\]
\[\begin{split}\lambda (\text{div }\mathbf{v})\mathbf{I}=\lambda \begin{bmatrix}
\cfrac{\partial u}{\partial x}+\cfrac{\partial v}{\partial y}+\cfrac{\partial w}{\partial z}& 0 & 0\\
0& \cfrac{\partial u}{\partial x}+\cfrac{\partial v}{\partial y}+\cfrac{\partial w}{\partial z} & 0\\
0& 0 & \cfrac{\partial u}{\partial x}+\cfrac{\partial v}{\partial y}+\cfrac{\partial w}{\partial z}\\
\end{bmatrix}\end{split}\]
\[\begin{split}\lambda (\text{div }\mathbf{v})\mathbf{I}=\lambda \begin{bmatrix}
\text{div }\mathbf{v}& 0 & 0\\
0& \text{div }\mathbf{v} & 0\\
0& 0 & \text{div }\mathbf{v}\\
\end{bmatrix}\end{split}\]
\[\begin{split}\text{grad }\mathbf{v}=[\nabla \mathbf{v}]^{\text T}=\begin{bmatrix}
\cfrac{\partial u}{\partial x}& \cfrac{\partial v}{\partial x} & \cfrac{\partial w}{\partial x}\\
\cfrac{\partial u}{\partial y}& \cfrac{\partial v}{\partial y} & \cfrac{\partial w}{\partial y}\\
\cfrac{\partial u}{\partial z}& \cfrac{\partial v}{\partial z} & \cfrac{\partial w}{\partial z}\\
\end{bmatrix}^{\text T} = \begin{bmatrix}
\cfrac{\partial u}{\partial x}& \cfrac{\partial u}{\partial y} & \cfrac{\partial u}{\partial z}\\
\cfrac{\partial v}{\partial x}& \cfrac{\partial v}{\partial y} & \cfrac{\partial v}{\partial z}\\
\cfrac{\partial w}{\partial x}& \cfrac{\partial w}{\partial y} & \cfrac{\partial w}{\partial z}\\
\end{bmatrix}\end{split}\]
\[\begin{split}(\text{grad }\mathbf{v})^{\text{T}}=[\nabla \mathbf{v}]=\begin{bmatrix}
\cfrac{\partial u}{\partial x}& \cfrac{\partial v}{\partial x} & \cfrac{\partial w}{\partial x}\\
\cfrac{\partial u}{\partial y}& \cfrac{\partial v}{\partial y} & \cfrac{\partial w}{\partial y}\\
\cfrac{\partial u}{\partial z}& \cfrac{\partial v}{\partial z} & \cfrac{\partial w}{\partial z}\\
\end{bmatrix}\end{split}\]
\[\begin{split}\mu[(\text{grad }\mathbf{v})+(\text{grad }\mathbf{v})^{\text{T}}]=
\mu([\nabla \mathbf{v}]^{\text{T}}+[\nabla \mathbf{v}])=
\mu\begin{bmatrix}
\cfrac{\partial u}{\partial x}+\cfrac{\partial u}{\partial x}& \cfrac{\partial u}{\partial y}+\cfrac{\partial v}{\partial x} & \cfrac{\partial u}{\partial z}+\cfrac{\partial w}{\partial x}\\
\cfrac{\partial v}{\partial x}+\cfrac{\partial u}{\partial y}& \cfrac{\partial v}{\partial y}+\cfrac{\partial v}{\partial y} & \cfrac{\partial v}{\partial z}+\cfrac{\partial w}{\partial y}\\
\cfrac{\partial w}{\partial x}+\cfrac{\partial u}{\partial z}& \cfrac{\partial w}{\partial y}+\cfrac{\partial v}{\partial z} & \cfrac{\partial w}{\partial z}+\cfrac{\partial w}{\partial z}\\
\end{bmatrix}\end{split}\]
\[\begin{split}\begin{align}
\tau_{xx} & = \lambda \left ( \cfrac{\partial u}{\partial x}+
\cfrac{\partial v}{\partial y}+
\cfrac{\partial w}{\partial z} \right ) +
2\mu \cfrac{\partial u}{\partial x}\\
\tau_{yy} & = \lambda \left ( \cfrac{\partial u}{\partial x}+
\cfrac{\partial v}{\partial y}+
\cfrac{\partial w}{\partial z} \right ) +
2\mu \cfrac{\partial v}{\partial y}\\
\tau_{zz} & = \lambda \left ( \cfrac{\partial u}{\partial x}+
\cfrac{\partial v}{\partial y}+
\cfrac{\partial w}{\partial z} \right ) +
2\mu \cfrac{\partial w}{\partial z}\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\tau_{xy} & = \mu \left ( \cfrac{\partial u}{\partial y}+
\cfrac{\partial v}{\partial x}\right )
\quad
\tau_{yx} = \mu \left ( \cfrac{\partial v}{\partial x}+
\cfrac{\partial u}{\partial y}\right )\\
\tau_{xz} & = \mu \left ( \cfrac{\partial u}{\partial z}+
\cfrac{\partial w}{\partial x}\right )
\quad
\tau_{zx} = \mu \left ( \cfrac{\partial w}{\partial x}+
\cfrac{\partial u}{\partial z}\right )\\
\tau_{yz} & = \mu \left ( \cfrac{\partial v}{\partial z}+
\cfrac{\partial w}{\partial y}\right )
\quad
\tau_{zy} = \mu \left ( \cfrac{\partial w}{\partial y}+
\cfrac{\partial v}{\partial z}\right )\\
\end{align}\end{split}\]
\[\tau_{xx}+\tau_{yy}+\tau_{zz}=(3\lambda+2\mu) \left ( \cfrac{\partial u}{\partial x}+
\cfrac{\partial v}{\partial y}+
\cfrac{\partial w}{\partial z} \right )
=(3\lambda+2\mu)\text{div }\mathbf{v}=(3\lambda+2\mu)(\nabla \cdot \mathbf{v})\]
Stokes’ hypothesis states that the bulk viscosity of a Newtonian fluid can be set to zero.
\[3\lambda +2\mu = 0\Longrightarrow \lambda=-\cfrac{2}{3} \mu\]
\[\tau_{xx}+\tau_{yy}+\tau_{zz}=(3\lambda+2\mu) \left ( \cfrac{\partial u}{\partial x}+
\cfrac{\partial v}{\partial y}+
\cfrac{\partial w}{\partial z} \right )=0\]
\[\begin{split}\begin{align}
\tau_{xx} & = \frac{2}{3} \mu\left ( 2 \frac{\partial u}{\partial x}- \frac{\partial v}{\partial y}-\frac{\partial w}{\partial z}\right )\\
\tau_{yy} & = \frac{2}{3} \mu\left ( 2 \frac{\partial v}{\partial y}- \frac{\partial w}{\partial z}-\frac{\partial u}{\partial x}\right )\\
\tau_{zz} & = \frac{2}{3} \mu\left ( 2 \frac{\partial w}{\partial z}- \frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right )\\
\end{align}\end{split}\]
The stress tensor
\[\boldsymbol\sigma =-p\mathbf{I}+\boldsymbol{\tau}\]
\[\sigma_{ij}=-p\delta_{ij}+\mu \left ( \cfrac{\partial u_{i}}{\partial x_{j}}+ \cfrac{\partial u_{j}}{\partial x_{i}} \right )+\delta_{ij}\lambda \nabla \cdot \mathbf{v}\]
total stress tensor- Cauchy stress tensor
\[\begin{split}\boldsymbol\sigma =\begin{bmatrix}
\sigma_{xx}& \sigma_{xy} & \sigma_{xz}\\
\sigma_{yx}& \sigma_{yy} & \sigma_{yz}\\
\sigma_{zx}& \sigma_{zy} & \sigma_{zz}\\
\end{bmatrix}\end{split}\]
the deviatoric or viscous stress tensor.
\[\begin{split}\boldsymbol\tau =\begin{bmatrix}
\tau_{xx}& \tau_{xy} & \tau_{xz}\\
\tau_{yx}& \tau_{yy} & \tau_{yz}\\
\tau_{zx}& \tau_{zy} & \tau_{zz}\\
\end{bmatrix}\end{split}\]
\[\begin{split}\begin{align}
\boldsymbol\sigma & = -\begin{bmatrix}
p& 0 & 0\\
0& p & 0\\
0& 0 & p\\
\end{bmatrix}+
\begin{bmatrix}
\tau_{xx}& \tau_{xy} & \tau_{xz}\\
\tau_{yx}& \tau_{yy} & \tau_{yz}\\
\tau_{zx}& \tau_{zy} & \tau_{zz}\\
\end{bmatrix}
\end{align}=-p\mathbf{I}+\boldsymbol\tau\end{split}\]
\[\begin{split}\boldsymbol\sigma =
\begin{bmatrix}
\tau_{xx}-p& \tau_{xy} & \tau_{xz}\\
\tau_{yx}& \tau_{yy}-p & \tau_{yz}\\
\tau_{zx}& \tau_{zy} & \tau_{zz}-p\\
\end{bmatrix}\end{split}\]
\[\begin{split}\begin{align}
\sigma_{xx}&=\tau_{xx}-p\\
\sigma_{yy}&=\tau_{yy}-p\\
\sigma_{zz}&=\tau_{zz}-p\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
p & = -\frac{1}{3}[ (\sigma_{xx}+\sigma_{yy}+\sigma_{zz})-(\tau_{xx}+\tau_{yy}+\tau_{zz})]\\
& = -\frac{1}{3}(\sigma_{xx}+\sigma_{yy}+\sigma_{zz})
\end{align}\end{split}\]
\[\begin{split}\text{div }\boldsymbol\tau=\nabla \cdot (\boldsymbol{\tau}^{\text{T}})=\cfrac{\partial \tau_{ij} }{\partial x_{j}}=
\begin{bmatrix}
\cfrac{\partial \tau_{11} }{\partial x_{1}}+
\cfrac{\partial \tau_{12} }{\partial x_{2}}+
\cfrac{\partial \tau_{13} }{\partial x_{3}}\\
\cfrac{\partial \tau_{21} }{\partial x_{1}}+
\cfrac{\partial \tau_{22} }{\partial x_{2}}+
\cfrac{\partial \tau_{23} }{\partial x_{3}}\\
\cfrac{\partial \tau_{31} }{\partial x_{1}}+
\cfrac{\partial \tau_{32} }{\partial x_{2}}+
\cfrac{\partial \tau_{33} }{\partial x_{3}}\\
\end{bmatrix}\end{split}\]
\[\begin{split}\text{div }\boldsymbol\tau=\nabla \cdot (\boldsymbol{\tau}^{\text{T}})=\cfrac{\partial \tau_{ij} }{\partial x_{j}}=
\begin{bmatrix}
\cfrac{\partial \tau_{xx} }{\partial x}+
\cfrac{\partial \tau_{xy} }{\partial y}+
\cfrac{\partial \tau_{xz} }{\partial z}\\
\cfrac{\partial \tau_{yx} }{\partial x}+
\cfrac{\partial \tau_{yy} }{\partial y}+
\cfrac{\partial \tau_{yz} }{\partial z}\\
\cfrac{\partial \tau_{zx} }{\partial x}+
\cfrac{\partial \tau_{zy} }{\partial y}+
\cfrac{\partial \tau_{zz} }{\partial z}\\
\end{bmatrix}\end{split}\]
\[\begin{split}\begin{align}
\text{div }\boldsymbol\tau & = \nabla \cdot (\boldsymbol{\tau}^{\text{T}})
= \cfrac{\partial \tau_{ij} }{\partial x_{j}} \\
& = \left ( \cfrac{\partial \tau_{xx} }{\partial x}+
\cfrac{\partial \tau_{xy} }{\partial y}+
\cfrac{\partial \tau_{xz} }{\partial z} \right )\mathbf{i}\\
&+ \left ( \cfrac{\partial \tau_{yx} }{\partial x}+
\cfrac{\partial \tau_{yy} }{\partial y}+
\cfrac{\partial \tau_{yz} }{\partial z}\\ \right )\mathbf{j}\\
&+ \left ( \cfrac{\partial \tau_{zx} }{\partial x}+
\cfrac{\partial \tau_{zy} }{\partial y}+
\cfrac{\partial \tau_{zz} }{\partial z}\ \right )\mathbf{k}
\end{align}\end{split}\]
\[\begin{split}[\boldsymbol{\tau}\cdot \mathbf{v}]=
\begin{bmatrix}
{\tau}_{xx}& {\tau}_{xy} & {\tau}_{xz}\\
{\tau}_{yx}& {\tau}_{yy} & {\tau}_{yz}\\
{\tau}_{zx}& {\tau}_{zy} & {\tau}_{zz}\\
\end{bmatrix}
\begin{bmatrix}
u\\ v\\ w\\
\end{bmatrix}
=\begin{bmatrix}
{\tau}_{xx}u+{\tau}_{xy}v+{\tau}_{xz}w\\
{\tau}_{yx}u+{\tau}_{yy}v+{\tau}_{yz}w\\
{\tau}_{zx}u+{\tau}_{zy}v+{\tau}_{zz}w\\
\end{bmatrix}\end{split}\]
\[\begin{split}\begin{align}
[\boldsymbol\tau \cdot \mathbf{v}]
&=(\tau_{xx}u+\tau_{xy}v+\tau_{xz}w)\mathbf{i}\\
&+(\tau_{yx}u+\tau_{yy}v+\tau_{yz}w)\mathbf{j}\\
&+(\tau_{zx}u+\tau_{zy}v+\tau_{zz}w)\mathbf{k}
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\text{div }[\boldsymbol\tau \cdot \mathbf{v}]&=\nabla \cdot [\boldsymbol\tau \cdot \mathbf{v}]\\
&=\cfrac{\partial(\tau_{xx}u+\tau_{xy}v+\tau_{xz}w) }{\partial x}\\
&+\cfrac{\partial(\tau_{yx}u+\tau_{yy}v+\tau_{yz}w) }{\partial y}\\
&+\cfrac{\partial(\tau_{zx}u+\tau_{zy}v+\tau_{zz}w) }{\partial z}\\
\end{align}\end{split}\]
Conservative form of the Navier-Stokes equations
\[\begin{split}\begin{align}
\cfrac{\partial \rho}{\partial t}+\text{div }(\rho\mathbf{v})=0\\
\cfrac{\partial (\rho\mathbf{v})}{\partial t}+\text{div }(\rho\mathbf{v}\otimes\mathbf{v})=\text{div }\boldsymbol\sigma\\
\cfrac{\partial (\rho E)}{\partial t}+\text{div }(\rho\mathbf{v}H)=\text{div }(\boldsymbol\tau\cdot\mathbf{v})-\text{div }\mathbf{q}\\
\end{align}\end{split}\]
\[\begin{split}\mathbf{vv}\equiv \mathbf{v\otimes v}=[\mathbf{v}][\mathbf{v}]^{\text{T}}=\begin{bmatrix}
u\\v\\w
\end{bmatrix}\begin{bmatrix}
u& v &w
\end{bmatrix}=\begin{bmatrix}
uu &uv &uw \\
vu &vv &vw \\
wu &wv &ww \\
\end{bmatrix}\end{split}\]
\[\text{div }(\mathbf{vv})\equiv \text{div }(\mathbf{v\otimes v}) = \text{div }(\mathbf{F})\]
\[\begin{split}\mathbf{F}=\begin{bmatrix}
uu &uv &uw \\
vu &vv &vw \\
wu &wv &ww \\
\end{bmatrix}\end{split}\]
\[\begin{split}\text{div}\mathbf{F} = \nabla \cdot (\mathbf{F}^{\text T})=
\begin{bmatrix}
\cfrac{\partial {F_{xx}}}{\partial x}
+\cfrac{\partial {F_{xy}}}{\partial y}
+\cfrac{\partial {F_{xz}}}{\partial z}\\
\cfrac{\partial {F_{yx}}}{\partial x}
+\cfrac{\partial {F_{yy}}}{\partial y}
+\cfrac{\partial {F_{yz}}}{\partial z}\\
\cfrac{\partial {F_{zx}}}{\partial x}
+\cfrac{\partial {F_{zy}}}{\partial y}
+\cfrac{\partial {F_{zz}}}{\partial z}\\
\end{bmatrix} =
\begin{bmatrix}
\cfrac{\partial {(uu)}}{\partial x}
+\cfrac{\partial {(uv)}}{\partial y}
+\cfrac{\partial {(uw)}}{\partial z}\\
\cfrac{\partial {(vu)}}{\partial x}
+\cfrac{\partial {(vv)}}{\partial y}
+\cfrac{\partial {(vw)}}{\partial z}\\
\cfrac{\partial {(wu)}}{\partial x}
+\cfrac{\partial {(wv)}}{\partial y}
+\cfrac{\partial {(ww)}}{\partial z}\\
\end{bmatrix}\end{split}\]
\[\begin{split}\begin{align}
\text{div}\boldsymbol{\sigma} = \nabla \cdot [\boldsymbol{\sigma}]^{\text T} & = \begin{bmatrix}
\cfrac{\partial {{\sigma}_{xx}}}{\partial x}
+\cfrac{\partial {{\sigma}_{xy}}}{\partial y}
+\cfrac{\partial {{\sigma}_{xz}}}{\partial z}\\
\cfrac{\partial {{\sigma}_{yx}}}{\partial x}
+\cfrac{\partial {{\sigma}_{yy}}}{\partial y}
+\cfrac{\partial {{\sigma}_{yz}}}{\partial z}\\
\cfrac{\partial {{\sigma}_{zx}}}{\partial x}
+\cfrac{\partial {{\sigma}_{zy}}}{\partial y}
+\cfrac{\partial {{\sigma}_{zz}}}{\partial z}\\
\end{bmatrix} \\& = \begin{bmatrix}
\cfrac{\partial {({\tau}_{xx}-p)}}{\partial x}
+\cfrac{\partial {{\tau}_{xy}}}{\partial y}
+\cfrac{\partial {{\tau}_{xz}}}{\partial z}\\
\cfrac{\partial {{\tau}_{yx}}}{\partial x}
+\cfrac{\partial {({\tau}_{yy}-p})}{\partial y}
+\cfrac{\partial {{\tau}_{yz}}}{\partial z}\\
\cfrac{\partial {{\tau}_{zx}}}{\partial x}
+\cfrac{\partial {{\tau}_{zy}}}{\partial y}
+\cfrac{\partial {({\tau}_{zz}-p)}}{\partial z}\\
\end{bmatrix}\\
& = \begin{bmatrix}
\cfrac{\partial {{\tau}_{xx}}}{\partial x}
+\cfrac{\partial {{\tau}_{xy}}}{\partial y}
+\cfrac{\partial {{\tau}_{xz}}}{\partial z}\\
\cfrac{\partial {{\tau}_{yx}}}{\partial x}
+\cfrac{\partial {{\tau}_{yy}}}{\partial y}
+\cfrac{\partial {{\tau}_{yz}}}{\partial z}\\
\cfrac{\partial {{\tau}_{zx}}}{\partial x}
+\cfrac{\partial {{\tau}_{zy}}}{\partial y}
+\cfrac{\partial {{\tau}_{zz}}}{\partial z}\\
\end{bmatrix}-
\begin{bmatrix}
\cfrac{\partial {p}}{\partial x}\\
\cfrac{\partial {p}}{\partial y}\\
\cfrac{\partial {p}}{\partial z}\\
\end{bmatrix}
\end{align}\end{split}\]
\[\text{div }\boldsymbol{\sigma} = \nabla \cdot [\boldsymbol{\sigma}]^{\text T}
=\text{div }\boldsymbol{\tau}-\text{grad }p
=\text{div }\boldsymbol{\tau}-\nabla p
=\nabla \cdot [\boldsymbol{\tau}]^{\text T}-\nabla p\]
\[\begin{split}\begin{align}
\text{div }\mathbf{q} = \nabla \cdot\mathbf{q} & = \
\begin{bmatrix}
\cfrac{\partial {q}}{\partial x}\\
\cfrac{\partial {q}}{\partial y}\\
\cfrac{\partial {q}}{\partial z}\\
\end{bmatrix}
\end{align}\end{split}\]
Primitive form of the Navier-Stokes equations
\[\begin{split}\begin{align}
\cfrac{\text{d} \rho}{\text{d} t}+\rho\text{ div }\mathbf{v} & = 0\\
\rho\cfrac{\text{d} \mathbf{v}}{\text{d} t}=\text{div }\boldsymbol\sigma&=\text{div }\boldsymbol\tau-\text{grad }p\\
\cfrac{\text{d} p}{\text{d} t}+\gamma p\text{ div }\mathbf{v}&=(\gamma-1)[\boldsymbol\tau:\text{grad }\mathbf{v}-\text{div }\mathbf{q}]\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\cfrac{\text{d} \alpha}{\text{d} t} & = \cfrac{\partial \alpha}{\partial t}+u\cfrac{\partial \alpha}{\partial x}+v\cfrac{\partial \alpha}{\partial y}+w\cfrac{\partial \alpha}{\partial z}\\
&= \cfrac{\partial \alpha}{\partial t}+\mathbf{v}\cdot \text{ grad } \alpha\\
&= \cfrac{\partial \alpha}{\partial t}+\mathbf{v}\cdot \nabla \alpha\\
\end{align}\end{split}\]
\[\text{div }(\phi\mathbf{v})=\phi\text{ div }\mathbf{v}+\mathbf{v}\cdot \text{ grad }\phi\]
\[\text{div }(\rho\mathbf{v})=\rho\text{ div }\mathbf{v}+\mathbf{v}\cdot \text{ grad }\rho\]
\[\cfrac{\text{d} \rho}{\text{d} t}= \cfrac{\partial \rho}{\partial t}+\mathbf{v}\cdot \text{ grad } \rho\]
\[\begin{split}\begin{align}
\cfrac{\partial \rho}{\partial t}+\text{div }(\rho\mathbf{v}) & = \cfrac{\partial \rho}{\partial t}+\rho\text{ div }\mathbf{v}+\mathbf{v}\cdot \text{ grad }\rho \\
&= \cfrac{\text{d} \rho}{\text{d} t}+\rho\text{ div }\mathbf{v}
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\cfrac{\text{d} u}{\text{d} t} & = \cfrac{\partial u}{\partial t}+\mathbf{v}\cdot \text{ grad } u\\
\cfrac{\text{d} v}{\text{d} t} & = \cfrac{\partial v}{\partial t}+\mathbf{v}\cdot \text{ grad } v\\
\cfrac{\text{d} w}{\text{d} t} & = \cfrac{\partial w}{\partial t}+\mathbf{v}\cdot \text{ grad } w\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\mathbf{v}\cdot \text{ grad } u & = u\cfrac{\partial u}{\partial x}+v\cfrac{\partial u}{\partial y}+w\cfrac{\partial u}{\partial z}\\
\mathbf{v}\cdot \text{ grad } v & = u\cfrac{\partial v}{\partial x}+v\cfrac{\partial v}{\partial y}+w\cfrac{\partial v}{\partial z}\\
\mathbf{v}\cdot \text{ grad } w & = u\cfrac{\partial w}{\partial x}+v\cfrac{\partial w}{\partial y}+w\cfrac{\partial w}{\partial z}\\
\end{align}\end{split}\]
\[\begin{split}(\text{grad }\mathbf{v})^{\text{T}}=[\nabla \mathbf{v}]=\begin{bmatrix}
\cfrac{\partial u}{\partial x}& \cfrac{\partial v}{\partial x} & \cfrac{\partial w}{\partial x}\\
\cfrac{\partial u}{\partial y}& \cfrac{\partial v}{\partial y} & \cfrac{\partial w}{\partial y}\\
\cfrac{\partial u}{\partial z}& \cfrac{\partial v}{\partial z} & \cfrac{\partial w}{\partial z}\\
\end{bmatrix}\end{split}\]
\[\begin{split}\begin{align}
[\mathbf{v}^{\text{T}}][(\text{grad }\mathbf{v})^{\text{T}}] & = [\mathbf{v}^{\text{T}}][\nabla \mathbf{v}] = \begin{bmatrix}
u&v &w
\end{bmatrix}
\begin{bmatrix}
\cfrac{\partial u}{\partial x}& \cfrac{\partial v}{\partial x} & \cfrac{\partial w}{\partial x}\\
\cfrac{\partial u}{\partial y}& \cfrac{\partial v}{\partial y} & \cfrac{\partial w}{\partial y}\\
\cfrac{\partial u}{\partial z}& \cfrac{\partial v}{\partial z} & \cfrac{\partial w}{\partial z}\\
\end{bmatrix}\\
&=\begin{bmatrix}
u\cfrac{\partial u}{\partial x}+v\cfrac{\partial u}{\partial y}+w\cfrac{\partial u}{\partial z}\\
u\cfrac{\partial v}{\partial x}+v\cfrac{\partial v}{\partial y}+w\cfrac{\partial v}{\partial z}\\
u\cfrac{\partial w}{\partial x}+v\cfrac{\partial w}{\partial y}+w\cfrac{\partial w}{\partial z}\\
\end{bmatrix}^{\text{T}}
\end{align}\end{split}\]
\[(\mathbf{A}\mathbf{B})^{\text{T}}=\mathbf{B}^{\text{T}}\mathbf{A}^{\text{T}}\]
\[\begin{split}\begin{align}
[(\text{grad }\mathbf{v})][\mathbf{v}] & = [\nabla \mathbf{v}]^{\text{T}}[\mathbf{v}] =
\begin{bmatrix}
\cfrac{\partial u}{\partial x}& \cfrac{\partial u}{\partial y} & \cfrac{\partial u}{\partial y}\\
\cfrac{\partial v}{\partial x}& \cfrac{\partial v}{\partial y} & \cfrac{\partial v}{\partial y}\\
\cfrac{\partial w}{\partial x}& \cfrac{\partial w}{\partial y} & \cfrac{\partial w}{\partial y}\\
\end{bmatrix}
\begin{bmatrix}
u\\v\\w\\
\end{bmatrix}
\\
&=\begin{bmatrix}
u\cfrac{\partial u}{\partial x}+v\cfrac{\partial u}{\partial y}+w\cfrac{\partial u}{\partial z}\\
u\cfrac{\partial v}{\partial x}+v\cfrac{\partial v}{\partial y}+w\cfrac{\partial v}{\partial z}\\
u\cfrac{\partial w}{\partial x}+v\cfrac{\partial w}{\partial y}+w\cfrac{\partial w}{\partial z}\\
\end{bmatrix}
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\cfrac{\text{d} \mathbf{v}}{\text{d} t} & = \cfrac{\partial \mathbf{v}}{\partial t}+[(\text{grad }\mathbf{v})][\mathbf{v}]\\
\cfrac{\text{d} \mathbf{v}}{\text{d} t} & = \cfrac{\partial \mathbf{v}}{\partial t}+[\nabla \mathbf{v}]^{\text{T}}[\mathbf{v}] \\
\cfrac{\text{d} \mathbf{v}}{\text{d} t} & = \cfrac{\partial \mathbf{v}}{\partial t}+ (\mathbf{v}\cdot \nabla)\mathbf{v} \\
\cfrac{\text{d} \boldsymbol{\alpha}}{\text{d} t} & = \cfrac{\partial \boldsymbol{\alpha}}{\partial t}+ (\mathbf{v}\cdot \nabla)\boldsymbol{\alpha} \\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
(\mathbf{a}\otimes \mathbf{b})\cdot \mathbf{c}&=\mathbf{a}(\mathbf{b}\cdot\mathbf{c})\\
\text{div }(\mathbf{a}\otimes \mathbf{b}) & = (\text{grad }\mathbf{a})\cdot \mathbf{b}+\mathbf{a}\text{ div }\mathbf{b}\\
\text{div }(\phi \mathbf{T}) & = \mathbf{T}\cdot (\text{grad }\phi)+\phi\text{ div }\mathbf{T}\\
\text{div }(\phi (\mathbf{a}\otimes \mathbf{b})) & = (\mathbf{a}\otimes \mathbf{b})\cdot (\text{grad }\phi)+\phi\text{ div }(\mathbf{a}\otimes \mathbf{b})\\
(\mathbf{a}\otimes \mathbf{b})\cdot (\text{grad }\phi)&=\mathbf{a}(\mathbf{b}\cdot(\text{grad }\phi))
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\text{div }(\rho(\mathbf{v}\otimes \mathbf{v})) & = (\mathbf{v}\otimes \mathbf{v})\cdot (\text{grad }\rho)+\rho\text{ div }(\mathbf{a}\otimes \mathbf{b})\\
\text{div }(\rho(\mathbf{v}\otimes \mathbf{v})) & = {\mathbf{v}}(\mathbf{v}\cdot (\text{grad }\rho))+\rho\text{ div }(\mathbf{v}\otimes \mathbf{v})\\
\end{align}\end{split}\]
\[\begin{split}\begin{array}{c}
\cfrac{\text{d} \rho}{\text{d} t} = \cfrac{\partial \rho}{\partial t}+\mathbf{v}\cdot \text{grad }\rho\\
\cfrac{\text{d} \rho}{\text{d} t} - \cfrac{\partial \rho}{\partial t}=\mathbf{v}\cdot \text{grad }\rho\\
\mathbf{v}\cdot \text{grad }\rho=\cfrac{\text{d} \rho}{\text{d} t} - \cfrac{\partial \rho}{\partial t}\\
\end{array}\end{split}\]
\[\mathbf{v}(\mathbf{v}\cdot \text{grad }\rho)=\mathbf{v}\cfrac{\text{d} \rho}{\text{d} t} - \mathbf{v}\cfrac{\partial \rho}{\partial t}\]
\[\begin{split}\begin{align}
\rho \cfrac{\text{d} \mathbf{v}}{\text{d} t} & = \rho\cfrac{\partial \mathbf{v}}{\partial t}+\rho[(\text{grad }\mathbf{v})][\mathbf{v}]\\
\rho\cfrac{\text{d} \mathbf{v}}{\text{d} t} & = \rho\cfrac{\partial \mathbf{v}}{\partial t}+\rho[\nabla \mathbf{v}]^{\text{T}}[\mathbf{v}] \\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\cfrac{\partial (\rho\mathbf{v})}{\partial t}=\rho\cfrac{\partial \mathbf{v}}{\partial t}+\mathbf{v}\cfrac{\partial \rho}{\partial t}\\
\rho\cfrac{\partial \mathbf{v}}{\partial t}= \cfrac{\partial (\rho\mathbf{v})}{\partial t}-\mathbf{v}\cfrac{\partial \rho}{\partial t}\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
&\cfrac{\partial (\rho\mathbf{v})}{\partial t}+\text{div }(\rho\mathbf{v}\otimes\mathbf{v}) \\
=& \cfrac{\partial (\rho\mathbf{v})}{\partial t}+{\mathbf{v}}(\mathbf{v}\cdot (\text{grad }\rho))+\rho\text{ div }(\mathbf{v}\otimes \mathbf{v})\\
=& \rho\cfrac{\partial \mathbf{v}}{\partial t}+\mathbf{v}\cfrac{\partial \rho}{\partial t}+{\mathbf{v}}(\mathbf{v}\cdot (\text{grad }\rho))+\rho\text{ div }(\mathbf{v}\otimes \mathbf{v})\\
=& \rho\cfrac{\partial \mathbf{v}}{\partial t}+\mathbf{v}\cfrac{\partial \rho}{\partial t}+[\mathbf{v}\cfrac{\text{d} \rho}{\text{d} t} - \mathbf{v}\cfrac{\partial \rho}{\partial t}]+\rho\text{ div }(\mathbf{v}\otimes \mathbf{v})\\
=& \rho\cfrac{\partial \mathbf{v}}{\partial t}+\mathbf{v}\cfrac{\text{d} \rho}{\text{d} t}+\rho\text{ div }(\mathbf{v}\otimes \mathbf{v})\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\rho\cfrac{\partial \mathbf{v}}{\partial t}&= \rho \cfrac{\text{d} \mathbf{v}}{\text{d} t} -\rho[(\text{grad }\mathbf{v})][\mathbf{v}]\\
\rho\cfrac{\partial \mathbf{v}}{\partial t}&= \rho \cfrac{\text{d} \mathbf{v}}{\text{d} t} -\rho[\nabla \mathbf{v}]^{\text{T}}[\mathbf{v}]\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
&\cfrac{\partial (\rho\mathbf{v})}{\partial t}+\text{div }(\rho\mathbf{v}\otimes\mathbf{v}) \\
=& \rho\cfrac{\partial \mathbf{v}}{\partial t}+\mathbf{v}\cfrac{\text{d} \rho}{\text{d} t}+\rho\text{ div }(\mathbf{v}\otimes \mathbf{v})\\
=& (\rho \cfrac{\text{d} \mathbf{v}}{\text{d} t} -\rho[(\text{grad }\mathbf{v})][\mathbf{v}])+\mathbf{v}\cfrac{\text{d} \rho}{\text{d} t}+\rho\text{ div }(\mathbf{v}\otimes \mathbf{v})\\
=& \rho \cfrac{\text{d} \mathbf{v}}{\text{d} t}+\mathbf{v}\cfrac{\text{d} \rho}{\text{d} t}-\rho[(\text{grad }\mathbf{v})][\mathbf{v}]+\rho\text{ div }(\mathbf{v}\otimes \mathbf{v})\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\text{div }(\mathbf{v}\otimes \mathbf{v}) & = (\text{grad }\mathbf{v})\cdot \mathbf{v}+\mathbf{v}\text{ div }\mathbf{v}\\
\rho \text{ div }(\mathbf{v}\otimes \mathbf{v}) & = \rho (\text{grad }\mathbf{v})\cdot \mathbf{v}+\rho \mathbf{v}\text{ div }\mathbf{v}\\
\end{align}\end{split}\]
\[\begin{split}\begin{align}
&\cfrac{\partial (\rho\mathbf{v})}{\partial t}+\text{div }(\rho\mathbf{v}\otimes\mathbf{v}) \\
=& \rho \cfrac{\text{d} \mathbf{v}}{\text{d} t}+\mathbf{v}\cfrac{\text{d} \rho}{\text{d} t}-\rho[(\text{grad }\mathbf{v})][\mathbf{v}]+\rho\text{ div }(\mathbf{v}\otimes \mathbf{v})\\
=& \rho \cfrac{\text{d} \mathbf{v}}{\text{d} t}+\mathbf{v}\cfrac{\text{d} \rho}{\text{d} t}-\rho[(\text{grad }\mathbf{v})][\mathbf{v}]+\rho (\text{grad }\mathbf{v})\cdot \mathbf{v}+\rho \mathbf{v}\text{ div }\mathbf{v}\\
=& \rho \cfrac{\text{d} \mathbf{v}}{\text{d} t}+\mathbf{v}\cfrac{\text{d} \rho}{\text{d} t}+\rho \mathbf{v}\text{ div }\mathbf{v}\\
=& \rho \cfrac{\text{d} \mathbf{v}}{\text{d} t}+\mathbf{v}(\cfrac{\text{d} \rho}{\text{d} t}+\rho \text{ div }\mathbf{v})\\
=& \rho \cfrac{\text{d} \mathbf{v}}{\text{d} t}+\mathbf{v}\cdot(0)\\
=& \rho \cfrac{\text{d} \mathbf{v}}{\text{d} t}\\
\end{align}\end{split}\]
\[\begin{split}\mathbf{A}:\mathbf{B}=\text{tr}(\mathbf{A}^{\text{T}}\mathbf{B})
=\text{tr}(\mathbf{A}\mathbf{B}^{\text{T}})
=\text{tr}(\mathbf{B}^{\text{T}}\mathbf{A})
=\text{tr}(\mathbf{B}\mathbf{A}^{\text{T}})\\\end{split}\]
\[\text{div }(\mathbf{T}\cdot\mathbf{v}) = \mathbf{v}\cdot(\text{div }\mathbf{T}^{\text{T}})+\text{tr}(\mathbf{T}\cdot \text{grad }\mathbf{v})\]
\[\begin{split}\begin{align}
\cfrac{\text{d} \alpha}{\text{d} t} & = \cfrac{\partial \alpha}{\partial t}+u\cfrac{\partial \alpha}{\partial x}+v\cfrac{\partial \alpha}{\partial y}+w\cfrac{\partial \alpha}{\partial z}\\
&= \cfrac{\partial \alpha}{\partial t}+\mathbf{v}\cdot \text{ grad } \alpha\\
&= \cfrac{\partial \alpha}{\partial t}+\mathbf{v}\cdot \nabla \alpha\\
\end{align}\end{split}\]
\[\begin{split}\cfrac{\text{d} f}{\text{d} t}=\cfrac{\partial f}{\partial t}\Bigg|_{\boldsymbol{\xi}}
=\cfrac{\partial f}{\partial t}\Bigg|_{\boldsymbol{\chi}}+\cfrac{\partial f}{\partial \mathbf{x}}\cdot \mathbf{c}
=\cfrac{\partial f}{\partial t}\Bigg|_{\boldsymbol{\chi}}+\mathbf{c} \cdot \nabla {f}\\\end{split}\]
\[\cfrac{\text{d} f}{\text{d} t} = \cfrac{\partial f}{\partial t}\Bigg|_{\boldsymbol{\chi}}
+{c}_{1} \cfrac{\partial f}{\partial x}
+{c}_{2} \cfrac{\partial f}{\partial y}
+{c}_{3} \cfrac{\partial f}{\partial z}\]
\[\begin{split}\begin{align}
\cfrac{\text{d} u}{\text{d} t} &= \cfrac{\partial u}{\partial t}\Bigg|_{\boldsymbol{\chi}}
+{c}_{1} \cfrac{\partial u}{\partial x}
+{c}_{2} \cfrac{\partial u}{\partial y}
+{c}_{3} \cfrac{\partial u}{\partial z}\\
\cfrac{\text{d} v}{\text{d} t} &= \cfrac{\partial v}{\partial t}\Bigg|_{\boldsymbol{\chi}}
+{c}_{1} \cfrac{\partial v}{\partial x}
+{c}_{2} \cfrac{\partial v}{\partial y}
+{c}_{3} \cfrac{\partial v}{\partial z}\\
\cfrac{\text{d} w}{\text{d} t} &= \cfrac{\partial w}{\partial t}\Bigg|_{\boldsymbol{\chi}}
+{c}_{1} \cfrac{\partial w}{\partial x}
+{c}_{2} \cfrac{\partial w}{\partial y}
+{c}_{3} \cfrac{\partial w}{\partial z}\\
\end{align}\end{split}\]
\[\cfrac{\text{d} \mathbf{v}}{\text{d} t} = \cfrac{\partial \mathbf{v}}{\partial t}\Bigg|_{\boldsymbol{\chi}}
+(\mathbf{c}\cdot \nabla) \mathbf{v}\]