Some Example
\[\int_{g(a)}^{g(b)}f(x)dx=\int_{a}^{b}f(g(u)){g}'(u) du\]
\[\begin{split}x=g(u)\\\end{split}\]
\[\begin{split}\left\{\begin{matrix}
u=a,& x=g(a)\\
u=b,& x=g(b)\\
\end{matrix}\right.\end{split}\]
\[\begin{split}\int_{g(a)}^{g(b)}f(x)dx=\int_{a}^{b}f(g(u))J(u) du\\\end{split}\]
\[\begin{split}J(u)=\text{det}\begin{bmatrix}
\cfrac{\partial x}{\partial u}
\end{bmatrix}=\text{det}\begin{bmatrix}
\cfrac{\partial g}{\partial u}
\end{bmatrix}=\text{det}\begin{bmatrix}
\cfrac{\text{d} g}{\text{d} u}
\end{bmatrix}=\text{det}\begin{bmatrix}
{g}'(u)
\end{bmatrix}={g}'(u)\\\end{split}\]
Example 1:
\[\begin{split}x=g(u,t)=(1-u)t+\frac{1}{2}ut^2+u \\\end{split}\]
\[\begin{split}\left\{\begin{matrix}
u=0,t=1,& x=g(u,t)=g(0,1)=1\\
u=1,t=1,& x=g(u,t)=g(1,1)=\frac{1}{2}+1\\
\end{matrix}\right.\end{split}\]
Let
\[f(x,t)\equiv 1\]
then there is
\[\int_{g(a,t)}^{g(b,t)}f(x,t)dx=\int_{1}^{1+\frac{1}{2} }1dx=\frac{1}{2}\]
\[\cfrac{\partial g(u,t)}{\partial u}=\cfrac{\partial [(1-u)t+\frac{1}{2}ut^2+u]}{\partial u}=-t+\frac{1}{2}t^2+1\]
\[\cfrac{\partial g(u,t)}{\partial u}\Bigg|_{t=1}=\cfrac{\partial [(1-u)t+\frac{1}{2}ut^2+u]}{\partial u}\Bigg|_{t=1}=(-t+\frac{1}{2}t^2+1)\Bigg|_{t=1}=\frac{1}{2}\]
\[\begin{split}\int_{g(a,t)}^{g(b,t)}f(x,t)dx=\int_{a(t)}^{b(t)}f(g(u,t),t)\cfrac{\partial g(u,t)}{\partial u} du\\\end{split}\]
\[\int_{a(t)}^{b(t)}f(g(u,t),t)\cfrac{\partial g(u,t)}{\partial u} du=\int_{0}^{1}1\times\frac{1}{2} du=\frac{1}{2}\]
Let
\[f(x,t)\equiv x\]
then there is
\[\int_{g(a,t)}^{g(b,t)}f(x,t)dx=\int_{1}^{1+\frac{1}{2} }xdx=\frac{1}{2}x^2\Bigg|_{1}^{1+\frac{1}{2}}
=\frac{1}{2}((\frac{3}{2})^2-1^{2})=\frac{5}{8}\]
\[\cfrac{\partial g(u,t)}{\partial u}\Bigg|_{t=1}=\cfrac{\partial [(1-u)t+\frac{1}{2}ut^2+u]}{\partial u}\Bigg|_{t=1}=(-t+\frac{1}{2}t^2+1)\Bigg|_{t=1}=\frac{1}{2}\]
\[\int_{g(a,t)}^{g(b,t)}f(x,t)dx=\int_{a(t)}^{b(t)}f(g(u,t),t)\cfrac{\partial g(u,t)}{\partial u} du\]
\[\begin{split}x=g(u,t)=(1-u)t+\frac{1}{2}ut^2+u \\\end{split}\]
\[\begin{split}\begin{align}
\displaystyle \int_{a(t)}^{b(t)}f(g(u,t),t)\cfrac{\partial g(u,t)}{\partial u} du & = \int_{0}^{1}((1-u)1+\frac{1}{2}u1^2+u)\times\frac{1}{2} du\\
\displaystyle & = \int_{0}^{1}(1+\frac{1}{2}u)\times\frac{1}{2} du\\
\displaystyle& = \frac{1}{2}(u+\frac{1}{4}u^2)\Bigg|_{0}^{1}\\
\displaystyle& = \frac{1}{2}(1+\frac{1}{4})\\
& = \frac{5}{8}
\end{align}\end{split}\]
Example 2:
\[\begin{split}\begin{array}{l}
x=g(u,t)\\
f(x,t)=f(g(u,t),t)=\hat{f}(u,t)\\
\cfrac{\text{d}\hat{f}(u,t)}{\text{d}t}\equiv \cfrac{\partial \hat{f}(u,t)}{\partial t}
=\cfrac{\partial {f}(x,t)}{\partial t}+\cfrac{\partial {f}(x,t)}{\partial x}\cfrac{\partial {g}(u,t)}{\partial t}\\
\cfrac{\text{d}\hat{f}}{\text{d}t}\equiv \cfrac{\partial \hat{f}}{\partial t}
=\cfrac{\partial {f}}{\partial t}+\cfrac{\partial {f}}{\partial x}\cfrac{\partial {g}}{\partial t}
\end{array}\end{split}\]
\[\begin{split}x=g(u,t)=(1-u)t+\frac{1}{2}ut^2+u \\\end{split}\]
\[\begin{split}\begin{array}{l}
f(x,t)= xt \\
f(x,t)= xt=((1-u)t+\frac{1}{2}ut^2+u)t=\hat{f}(u,t) \\
\hat{f}(u,t)=((1-u)t+\frac{1}{2}ut^2+u)t=((1-u)t^2+\frac{1}{2}ut^3+ut)
\end{array}\end{split}\]
\[\cfrac{\text{d}\hat{f}(u,t)}{\partial t}\equiv\cfrac{\partial \hat{f}(u,t)}{\partial t}
=\cfrac{\partial ((1-u)t^2+\cfrac{1}{2}ut^3+ut)}{\partial t}
=(2(1-u)t+3\cfrac{1}{2}ut^2+u)\]
\[\begin{split}\cfrac{\partial f(x,t)}{\partial t}=x,\quad\cfrac{\partial f(x,t)}{\partial x}=t\\\end{split}\]
\[\begin{split}\begin{align}
\cfrac{\partial x}{\partial t} & = \cfrac{\partial g(u,t)}{\partial t}\\
& = \cfrac{\partial ((1-u)t+\frac{1}{2}ut^2+u)}{\partial t}\\
& = (1-u)+ut
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\cfrac{\text{d}f(x,t)}{\text{d} t} & = \cfrac{\partial {f}(x,t)}{\partial t}+\cfrac{\partial {f}(x,t)}{\partial x}\cfrac{\partial {g}(u,t)}{\partial t}\\
& = x+t((1-u)+ut)\\
& = x+((1-u)t+ut^2)\\
& = ((1-u)t+\frac{1}{2}ut^2+u)+((1-u)t+ut^2)\\
& = (2(1-u)t+\frac{3}{2}ut^2+u)\\
\end{align}\end{split}\]
A better understanding of this formula
\[\begin{split}\begin{array}{c}
x=g(u,t)=(1-u)t+\cfrac{1}{2}ut^2+u\\
{g}'(u,t)=\cfrac{\partial g(u,t)}{\partial u}=-t+\cfrac{1}{2}t^2+1\\
\displaystyle \int_{g(a)}^{g(b)}\cfrac{d f(x,t)}{dt} dx=\int_{a}^{b}\cfrac{\partial \hat{f}(u,t)}{\partial t}{g}'(u,t) du
\end{array}\end{split}\]
Proof:
\[\begin{split}\begin{array}{c}
\displaystyle h(x,t)\equiv \cfrac{d f(x,t)}{dt}\\
\displaystyle \hat{h}(u,t)\equiv \cfrac{\partial \hat{f}(u,t)}{\partial t}\\
\end{array}\end{split}\]
\[h(x,t) = \hat{h}(u,t)\]
By the Chain Rule, \(F(g(u))\) is an antiderivative of \(h(g(u))\cdot {g}'(u)\) whenever \(F\)
is an antiderivative of \(h\), beacuse
\[\begin{split}\begin{align}
\cfrac{d}{du}F(g(u)) & = {F}'(g(u))\cdot {g}'(u)\\ & = h(g(u)){g}'(u)
\end{align}\end{split}\]
If we make the substitution \(x=g(u,t)\), then
\[\begin{split}\begin{align}
\int h(g(u))\cdot {g}'(u)du &= \int \cfrac{d}{du}F(g(u))du\\
&=F(g(u))+C\\
&=F(x)+C\\
&=\int {F}'(x)dx\\
&=\int h(x)dx\\
\end{align}\end{split}\]
\[\int h(x)dx = \int h(g(u))\cdot {g}'(u)du\]
Continue to prove
If \({g}'\) is continuous on the interval \([a,b]\) and \(h\) is continuous on the range of
\(g(u,t)=x\), then
\[\int_{g(a)}^{g(b)}h(x)dx=\int_{a}^{b}h(g(u))\cdot {g}'(u)du\]
Proof
Let \(F\) denote any antiderivative of \(h\). Then,
\[\begin{split}\begin{aligned}
\int_{a}^{b} h(g(x)) \cdot g^{\prime}(x) d x & =F(g(x))\Bigg ]_{x=a}^{x=b} \\
& =F(g(b))-F(g(a)) \\
& =F(u)\Bigg]_{u=g(a)}^{u=g(b)} \\
& =\int_{g(a)}^{g(b)} h(u) d u .
\end{aligned}\end{split}\]