定理 2
如果函数 \(u=\phi(x,y)\) 及 \(v=\psi(x,y)\) 都在点 \((x,y)\) 具有对 \(x\) 及对 \(y\) 的偏导数,函数 \(z=f(u,v)\) 在对应点
\((u,v)\) 具有连续偏导数,那么复合函数 \(z=f(\phi(x,y),\psi(x,y))\) 在点 \((x,y)\) 的两个偏导数都存在,且有
\[\begin{split}\begin{align}
\frac{\partial z}{\partial x} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x}+
\frac{\partial z}{\partial v} \frac{\partial v}{\partial x}\\
\frac{\partial z}{\partial y} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y}+
\frac{\partial z}{\partial v} \frac{\partial v}{\partial y}\\
\end{align}\end{split}\]
类似的,设 \(u=\phi(x,y)\) 、\(v=\psi(x,y)\) 及 \(w=\omega(x,y)\) 都在点 \((x,y)\) 具有对 \(x\) 及对 \(y\) 的偏导数,函数 \(z=f(u,v,w)\) 在对应点
\((u,v,w)\) 具有连续偏导数,那么复合函数
\[z=f(\phi(x,y),\psi(x,y),\omega(x,y))\]
在点 \((x,y)\) 的两个偏导数都存在,且有
\[\begin{split}\begin{align}
\frac{\partial z}{\partial x} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x}+
\frac{\partial z}{\partial v} \frac{\partial v}{\partial x}+
\frac{\partial z}{\partial w} \frac{\partial w}{\partial x}\\
\frac{\partial z}{\partial y} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y}+
\frac{\partial z}{\partial v} \frac{\partial v}{\partial y}+
\frac{\partial z}{\partial w} \frac{\partial w}{\partial y}
\end{align}\end{split}\]
更准确的叙述:
如果函数 \(u=\phi(x,y)\) 及 \(v=\psi(x,y)\) 都在点 \((x,y)\) 具有对 \(x\) 及对 \(y\) 的偏导数,函数 \(z(u,v)=f(u,v)\) 在对应点
\((u,v)\) 具有连续偏导数,那么复合函数 \(\hat{z}(x,y)=f(\phi(x,y),\psi(x,y))\) 在点 \((x,y)\) 的两个偏导数都存在,且有
\[\begin{split}\begin{align}
\frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial z(u,v)}{\partial u} \frac{\partial u(x,y)}{\partial x}+
\frac{\partial z(u,v)}{\partial v} \frac{\partial v(x,y)}{\partial x}\\
\frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial z(u,v)}{\partial u} \frac{\partial u(x,y)}{\partial y}+
\frac{\partial z(u,v)}{\partial v} \frac{\partial v(x,y)}{\partial y}\\
\end{align}\end{split}\]
类似的,设 \(u=\phi(x,y)\) 、\(v=\psi(x,y)\) 及 \(w=\omega(x,y)\) 都在点 \((x,y)\) 具有对 \(x\) 及对 \(y\) 的偏导数,函数 \(z(u,v,w)=f(u,v,w)\) 在对应点
\((u,v,w)\) 具有连续偏导数,那么复合函数
\[\hat{z}(x,y)=f(\phi(x,y),\psi(x,y),\omega(x,y))\]
在点 \((x,y)\) 的两个偏导数都存在,且有
\[\begin{split}\begin{align}
\frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial x}+
\frac{\partial z(u,v,w)}{\partial v} \frac{\partial v(x,y)}{\partial x}+
\frac{\partial z(u,v,w)}{\partial w} \frac{\partial w(x,y)}{\partial x}\\
\frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial y}+
\frac{\partial z(u,v,w)}{\partial v} \frac{\partial v(x,y)}{\partial y}+
\frac{\partial z(u,v,w)}{\partial w} \frac{\partial w(x,y)}{\partial y}
\end{align}\end{split}\]
定理 3
如果函数 \(u=\phi(x,y)\) 在点 \((x,y)\) 具有对 \(x\) 及对 \(y`的偏导数,函数 :math:`v=\psi(y)\) 在点 \(y\) 可导,函数 \(z=f(u,v)\) 在对应点
\((u,v)\) 具有连续偏导数,那么复合函数 \(z=f(\phi(x,y),\psi(y))\) 在点 \((x,y)\) 的两个偏导数都存在,且有
\[\begin{split}\begin{align}
\frac{\partial z}{\partial x} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x}\\
\frac{\partial z}{\partial y} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y}+
\frac{\partial z}{\partial v} \frac{\mathrm{d} v}{\mathrm{d} y}\\
\end{align}\end{split}\]
如果复合函数的某些中间变量本身又是复合函数的自变量
设 \(u=\phi(x,y)\) 、\(v=x\) 及 \(w=y\) 都在点 \((x,y)\) 具有对 \(x\) 及对 \(y\) 的偏导数,函数 \(z=f(u,v,w)\) 即 \(z=f(u,x,y)\) 在对应点
\((u,v,w)\) 具有连续偏导数,那么复合函数
\[z=f(\phi(x,y),x,y)\]
有
\[\begin{split}\begin{align}
\frac{\partial v}{\partial x}&=1, \quad \frac{\partial v}{\partial y}=0\\
\frac{\partial w}{\partial x}&=0, \quad \frac{\partial w}{\partial y}=1
\end{align}\end{split}\]
继续,有
\[\begin{split}\begin{align}
\frac{\partial z}{\partial x} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x}+
\frac{\partial z}{\partial v} \cdot 1+
\frac{\partial z}{\partial w} \cdot 0\\
\frac{\partial z}{\partial y} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y}+
\frac{\partial z}{\partial v} \cdot 0+
\frac{\partial z}{\partial w} \cdot 1
\end{align}\end{split}\]
继续,有
\[\begin{split}\begin{align}
\frac{\partial z}{\partial x} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x}+
\frac{\partial z}{\partial v}\\
\frac{\partial z}{\partial y} & = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y}+
\frac{\partial z}{\partial w}
\end{align}\end{split}\]
更准确的叙述:
如果函数 \(u=\phi(x,y)\) 在点 \((x,y)\) 具有对 \(x\) 及对 \(y\) 的偏导数,函数 \(v=\psi(y)\) 在点 \(y\) 可导,函数 \(z(u,v)=f(u,v)\) 在对应点
\((u,v)\) 具有连续偏导数,那么复合函数 \(\hat{z}(x,y)=f(\phi(x,y),\psi(y))=\hat{f}(x,y)\) 在点 \((x,y)\) 的两个偏导数都存在,且有
\[\begin{split}\begin{align}
\frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial z(u,v)}{\partial u} \frac{\partial u(x,y)}{\partial x}+
\frac{\partial z(u,v)}{\partial v} \cancelto{0}{\frac{\partial v(x,y)}{\partial x}}\\
\frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial z(u,v)}{\partial u} \frac{\partial u(x,y)}{\partial y}+
\frac{\partial z(u,v)}{\partial v} \cancelto{\frac{\mathrm{d} v(y)}{\mathrm{d} y}}{\frac{\partial v(x,y)}{\partial y}}
\end{align}\end{split}\]
\[\begin{split}\begin{align}
\frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial z(u,v)}{\partial u} \frac{\partial u(x,y)}{\partial x}\\
\frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial z(u,v)}{\partial u} \frac{\partial u(x,y)}{\partial y}+
\frac{\partial z(u,v)}{\partial v} {\frac{\mathrm{d} v(y)}{\mathrm{d} y}}
\end{align}\end{split}\]
如果复合函数的某些中间变量本身又是复合函数的自变量
设 \(u=\phi(x,y)\) 、\(v=x\) 及 \(w=y\) 都在点 \((x,y)\) 具有对 \(x\) 及对 \(y\) 的偏导数,函数 \(z(u,v,w)=f(u,v,w)\) 即 \(z=f(u,x,y)\) 在对应点
\((u,v,w)\) 具有连续偏导数,那么复合函数
\[\hat{z}(x,y)=f(\phi(x,y),x,y)=\hat{f}(x,y)\]
有:
\[\begin{split}\begin{align}
\frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial x}+
\frac{\partial z(u,v,w)}{\partial v} \frac{\partial v(x,y)}{\partial x}+
\frac{\partial z(u,v,w)}{\partial w} \frac{\partial w(x,y)}{\partial x}\\
\frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial y}+
\frac{\partial z(u,v,w)}{\partial v} \frac{\partial v(x,y)}{\partial y}+
\frac{\partial z(u,v,w)}{\partial w} \frac{\partial w(x,y)}{\partial y}
\end{align}\end{split}\]
继续,有:
\[\begin{split}\begin{align}
\frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial x}+
\frac{\partial z(u,v,w)}{\partial v} \cancelto{1}{\frac{\partial v(x,y)}{\partial x}}+
\frac{\partial z(u,v,w)}{\partial w} \cancelto{0}{\frac{\partial w(x,y)}{\partial x}}\\
\frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial y}+
\frac{\partial z(u,v,w)}{\partial v} \cancelto{0}{\frac{\partial v(x,y)}{\partial y}}+
\frac{\partial z(u,v,w)}{\partial w} \cancelto{1}{\frac{\partial w(x,y)}{\partial y}}
\end{align}\end{split}\]
即:
\[\begin{split}\begin{align}
\frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial x}+
\frac{\partial z(u,v,w)}{\partial v}\\
\frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial y}+
\frac{\partial z(u,v,w)}{\partial w}
\end{align}\end{split}\]
即:
\[\begin{split}\begin{align}
\frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial x}+
\frac{\partial z(u,v,w)}{\partial x}\\
\frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial z(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial y}+
\frac{\partial z(u,v,w)}{\partial y}
\end{align}\end{split}\]
也可以写成:
\[\begin{split}\begin{align}
\frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial f(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial x}+
\frac{\partial f(u,v,w)}{\partial x}\\
\frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial f(u,v,w)}{\partial u} \frac{\partial u(x,y)}{\partial y}+
\frac{\partial f(u,v,w)}{\partial y}
\end{align}\end{split}\]
继续,也可以写成:
\[\begin{split}\begin{align}
\frac{\partial \hat{z}(x,y)}{\partial x} & = \frac{\partial f(u,x,y)}{\partial u} \frac{\partial u(x,y)}{\partial x}+
\frac{\partial f(u,x,y)}{\partial x}\\
\frac{\partial \hat{z}(x,y)}{\partial y} & = \frac{\partial f(u,x,y)}{\partial u} \frac{\partial u(x,y)}{\partial y}+
\frac{\partial f(u,x,y)}{\partial y}
\end{align}\end{split}\]
需要注意的是,虽然数值上有:
\[\begin{split}\begin{align}
\hat{z}(x,y)&= \hat{f}(x,y)=z(u(x,y),x,y)=f(u(x,y),x,y)\\
\end{align}\end{split}\]
但是,函数形式上
\[\begin{split}\begin{align}
\hat{z}&\ne z\\
\hat{f}&\ne f\\
\hat{z}&\equiv \hat{f}\\
{z}&\equiv {f}\\
\end{align}\end{split}\]